Общение – компетентность – тренинг: избранные труды. Л. А. Петровская

Читать онлайн.
Название Общение – компетентность – тренинг: избранные труды
Автор произведения Л. А. Петровская
Жанр Социальная психология
Серия
Издательство Социальная психология
Год выпуска 2007
isbn 978-5-89357-245-2



Скачать книгу

что в ситуации поведенческого контроля стратегии не приведут к стабильной взаимной выгоде до тех пор, пока один или оба участника не согласятся на исходы, меньшие, чем наиболее желательные. Рассмотренная матрица относится к категории ситуаций торга. Здесь, как и в большинстве случаев торга, положение участников будет лучше, если они придут к согласию. Однако проблема как раз состоит в достижении соглашения. В нашем конкретном примере – это решение вопроса о том, куда все-таки пойти вместе: муж (А) предпочитает, чтобы оба выбрали пойти в кино, а жена (В) будет предпочитать, чтобы они оба пошли на концерт.

      Ситуация, представленная второй матрицей (рис. 3 (2)), в литературе по теории игр получила условное название «дилемма узника» («prisoner’s dilemma»). В содержательном плане ее иллюстрируют следующим образом.

      Двух заключенных подозревают в совместном преступлении. Они помещены в отдельные камеры. Каждый из них имеет выбор – признаться или не признаться в совершенном преступлении. Узникам известно, что, если оба не признаются, их обоих освободят (А = +1, В = +1); если оба признаются, оба получат одинаковое незначительное наказание (А = –1, В = –1); если один признается, в то время как другой – нет, признавшийся будет не только освобожден, но и вознагражден, а непризнавшийся получит суровое наказание (если А не признается, а В признается, то А сурово накажут (А = –2), В же получит не только свободу, но и вознаграждение (В = +2); если А признается, а В нет, то В будет серьезно наказан (В = –2) и А отпущен с наградой (А = +2)).

      Анализ матрицы показывает, что, выбирая признание, каждый участник может получить самое большое, на что он может рассчитывать в данной ситуации (+2), – понести наименьшую потерю из возможных (–2). Однако если каждый участник выберет признание, оба окажутся в проигрыше (А = –1, В = –1).

      Совершенно определенно, что в ситуации «дилемма узника» выбор участников зависит от того, насколько каждый из них уверен в мотивах другого, и от того, в какой мере каждый уверен, что другой ему доверяет.

      «Дилемма узника», как и первая рассмотренная нами ситуация, служит примером взаимного поведенческого контроля членов диады. Но она далеко не только этим интересна. Экспериментально-лабораторное проигрывание ситуации «дилемма узника» стало темой целой ветви исследований в зарубежной социальной психологии. В этом русле работает достаточно много авторов. В частности, М. Дойч, А. Рапопорт использовали данную схему, изучая различные аспекты взаимодействия. Обычно участников знакомят с матрицей, прежде чем их просят сделать выборы. Затем от них требуется сделать выборы одновременно: в одних случаях – не вступая в коммуникацию друг с другом (классический вариант), в других случаях изучается именно воздействие коммуникации на поведение. Игра может проигрываться многократно, и после каждого тура игрокам сообщаются исходы обоих. Иногда в роли игрока выступает не один человек, а команда с лидером. В исследованиях варьировали пол, возраст, интеллектуальный уровень участников и др. – все это с целью эмпирического поиска психологических факторов,