Разумное распределение активов. Как построить портфель с максимальной доходностью и минимальным риском. Уильям Бернстайн

Читать онлайн.



Скачать книгу

и далее компании малой, средней и высокой капитализации будут именоваться соответственно мелкими, средними и крупными компаниями. На практике эти варианты взаимозаменяемы, однако в официальных материалах принято использовать первый вариант написания. Также используются иные варианты наименования («голубые фишки», компании «второго эшелона» и т. п.) в книге для удобства восприятия информации, в том числе в названиях взаимных фондов и фондовых индексов, будет использоваться второй вариант. Прим. ред.

iVBORw0KGgoAAAANSUhEUgAAAjoAAAFkCAYAAAApJJHaAAAaJ0lEQVR4Xu3dMXKryBqAUUJCMkJSQiIWoEiLIFfMQliKlnX38fSquuan2ubKwwA2+JyqrmtJI2OQQN8AkoqLKV9jeo2h+ES67VmcDABAlULmz0Lo3FLkTMV2+uIAAABdCpwp/Zvv6Rlf475x6IzFcQAAPoZOCpzHa7RfDJ36C6P5xtABAIROnLeT4qT7Suik+z/ejDGi6XAAgNCJvTnpQnuVQ1cAgNApZycgP2bvuhrSbf9F+d2hAwAInftrDGmMZwwdAIAyewt5V3zUpdvDCUIHAKCOE4QXPzSwya4XOgAAQgcAEDoAAEIHAEDoAAAIHQAAoQMAIHQAAKEDACB0rgcAEDoAAEIHAEDoAO1r9J+M9s162y+MqvgJAIQOkOLk/hq3Io10uSuWVXGfD/erix8EQOiA0Lnl4wuhc1sYQgdA6IDQARA6gNABEDqA0AEQOoDQWQlA6IDQAUDogNABEDqA0AEQOoDQARA6gNBZBUDogNABQOiA0AEQOoDQARA6gNABEDqA0NkNgNABoQMgdAChAyB0AKEDIHQAoQPQvMZQZNKGb0yjOWPoAEIHEDnPNOZu6brhNcb0c3Om0AGEDuAw0hQjpMu37PJ4ltABhA5AmTZg909Cp023J+kQ1gaODB1A6ABE6Cx7piD6m+E1Hm/GGNMChM73A4TOkEKnLP6u/sJo7NEBofNTAELnlp2IfOpDV4DQAYROHjnt+T9HBxA6ARA69xQ53SxQylOEDoiW9geETvmX+/TFQQDG2efoTGmjVabL+Rh+TugACxFx/8GhE+MgANVr1PFvXB/XpWGPDtijY48OgNB5A4QOgNABhA6A0DkbEDoAQgcQOgBC52xA6AAIHUDoAAidswGhAyB0AKEDIHTOBoQOgNABhA6A0DkbEDoAQgcQOgBC52xA6AAIHUDoAAidswGhAyB0AKEDIHTOBoQOgNABhA6A0DkbEDoAQgcQOgBC52xA6AAIHUDoAAidswGhAyB0AKEDIHTOBoQOgNABhA6A0DkbEDoAQgcQOpcCCB1A6AAIHUDoAAgdEDpCB6BKEZJrXqMVOpsCoXMIgIiZZ77xSUEyzUZ5fOgAQmc9gC5FTh4693RdWbyk0HkcHzqA0FkPoE9jmodOujwU4Zau24DQAaFzIIBsj045v5y0sYdnUfsa3ZvRR+gAQmd/AOVC6HSfnMdTFcvurzF8YUwFIHS+GSB0+jehs9ZYAELncIDQCdNr3LON49PJyJsAoXMwgPxk5Ed2iGlM4+DQAYTOegBNippnFjtVujym8XyNWuhsAoTOoQChE+NWhHJ2gnHlk5FB6AgdAKEDQkfoAEIHEDoAQgcQOgBC5yRA6AAIHUDoXBEgdIBS6JwGgNCBFUHQXDV0Vs/XJQBCB4TO/beGztLyuGLoAEIHhI7QyecLQOiA0BE6AEIHhI7QARA6IHSEDoDQAaEjdAChAwidnNABhA4IHaEDIHRA6AgdAKEDQkfoAAgdEDpCB2iuuFIKHRA6QgcYX+PPbExphT8NoQNCR+gAVb6yphX+mTZQdbr9z9lWTqEDQkfoAE2KmGdaAf+vTJfHFDuPdLkpTkbogNAROkD7GtM8eFLgPGfXDcWJCR0QOkIHqNOL93MWN01xYkIHhI7QAbrXmNIY0+VhFjz3M56ILHRA6AgdoJ4FzfTPz7GC32fX1cXJCB0QOkIHnJ/zZ7YxGtLl+pONSlWcnNABoSN0wGfmPIqLETogdIQOeJt57/CU0AGhI3QAhA4IHaGzEiB0QOgIHQChA0JH6AB0aaNUCp0QQOgIHfA5O490+Wx//zQbz3wjI3RA6Agd8Dk7f2axcDvZW+enIjzistABoSN0gLSxmm0omuI8pixIhnTdBs4eOiB0hA7YcLXp37PqZl9Qek+R0xZLIobGL4ypOCUQOkIHaFIg/EljKM5rmh9+czIyCB2hA4wpDJ6zf6vibGLPS5U2ZE/n6IDQETrANAuCIcVOU5xL9cm3rrcRbb8pdEDoCB3gPtvj8cx+PmPolGke+iLc0nXlbwwdEDpCBxyuWh7NieNtTOOZYueXHboCoSN0gDaFwbAwyhOfWH1Po/7NJyOD0BE6IHS4cOiA0BE64NBVXVyU0AGhI3RA6EwLoypOSuiA0BE6wONqJyPnhA4IHaED9uiM6eTjx2wMP3CPjtABoSN0AOfoCB0QOkIHaNJKeFlCB4SO0AEbqyFWxFiZr0LogNAROuAby+/FS1y+zou60AGhI3TA28vr7CsU/px55RQ6IHSEDjAtnIz8SNf3xUkJHRA6QgcYUtA8U/TEN5dHAJ2S0AGhI3SAMvbqfBhDcQFCB4SO0AG6FDaP+MbvH0vogNAROgBCB4SO0AFu83Nz0r/j2ffqCB0QOkIH6D89PyeCpyxOTuiA0BE64O3lt7RhatIKOV7l7eVCB4SO0AGh071GHeP8n6MjdEDoCB3g9ubQVVX8BkIH6hQn+ah3DB2hE9NrFkZZrAfkX/mQfXhgU/wWQge6FCj56HcMHaETkXlfGFWxKaAsfiOhA91CDBwQOkJn6X7/PXSAPr14PxZGVZya0AGhI3TAt5cvj6Y4KaEDQkfoALf8yzxnl8dLrGRCB4SO0AEidq5B6IDQETrA8Bp/8nddzUZd/CxCB4SO0AGcoyN0QOgIHaBKK2C3MMripIQOCB2hA1TX3GsjdEDoCB0gvtOqLi5K6IDQETrgHJ3HwsePl8VJCR0QOkIHeFz0ZOQ63i4fnwf0O0MHhI7QAaHzzEcKhfqke16mNG9t+nn6vaEDQkfogENXzdU+7Tnb0A2/N3RA6Agd8KWe5aXiLb6QtI95+22hA0JH6AB1tvHIR3nSr7IYs+/w6r/wCdHjF8ZUfCMQOkIH8MnIU/b1FUO6XG6yvE4HhI7QAaHzTOMK33U1ZUFSxbz8tkNXIHSEDgidZxGeF3gxf2SHmJo0X9XvDB0QOkIH7NEZ0ph/g/njpOfo1LO/v8v28Pyi0AGhI3SAPuImDltd4AMDmxQ4EWy/MnRA6Agd4J6iYJqFTR+XOXnogNAROkCKmvZKcSN0QOgIHeCRDvHkh7C64sSEDggdoQPcs7jJ32ZeFycldEDoCB1gyoImD6C+OCmhA0JH6ABTvL08Vq7Z9V1xYkIHhI7QARu3PwtjOvuXfQodEDpCB2hnn5D8TIEz/ODIETogdIQOgNABoSN0gDrtwZnSeFzhJGShA0JH6ABtvJ08Gyd/URc6IHSEDjDOTjx+pDHO4qctTkrogNAROsCQoibXpeur4qSEDggdoQP0KWimbDyz64filIQOCB2hAw5dvR/P4mSEDggdoQP0KXYeSyPdfi9OTOiA0BE6QFlcjNABoSN0gNs/77KKvTfPs7/jSuiA0BE6QJ9/v1V8c/mp33UldEDoCB0gvcMqXsSn7Ms+++KkhA4IHaEDTP8ETURP8xqPs4eO0AGhI3SA7s1bysvixIQOCB2hA3T/7M2JwBl/4AomdEDoCB0AoQNCR+gAVdpA1NlK+jjzW8uFDggdoQPc5+fjpMtTdt1QnJDQAaEjdMAL9vMvJyA/z/o5OkIHhI7QAZoImbSCxeX8bedNcUJCB4SO0AGhM8ZKnT4VOTzOHjpCB4SO0AF7dKY08svP04aO0AGhI3RA6LwbpwwdoQN1iox81BcKHaETQdYsjLL4xaCK77VaHqf80EChA30KjXz01wodoZNuuy+Muvg9wEb/aqEDa2LgkqEjdJbn7fKAKt4uf63QAaEjdIQO8IhDdNcJHRA6QkfoAE0KnD79u5HvDx0QOkJH6ABj2ti2Xwmd9N8OXxhT8QOA0BE6QgfszSlfo/tinLRpA9b9ZfTfvUcHhI7QETrAOPtC0j6i5xqHrkDoCB2hA76w9Dn/hOf0c3Xqk5FB6AgdoQOkoKnTuMWXl4YrhA4IHaEjdIDuym8vB6EjdIQOOJTVCB2EjtAROgDnDx0QOkHoAAgdhI7QEToAQgehI3SEDiB0QOgIHaEDCB0QOkJH6ABCB4SO0BE6gNABoROEznsAQgehI3SEDiB0QOgIHaEDCB0QOkJH6ABCB4SO0BE6gNABobNA6AAIHYSO0BE6AEIHoSN0hA4gdEDoCB2hAwgdEDpCR+gAQgeEjtAROoDQAaEThA6A0EHoCB2hAyB0EDpCR+gAQgeEjtAROoDQAaEjdIQOIHRA6AgdoQMIHRA6QehsBBA6IHSEjtABhA4IHaEjdAChA9VrtAuj/A8xIHSETr3wvGqKgwBCB5oUDLd8/MfQETpCp82fW3H55AChg9AROkJned4AoQNCR+gIHUDogNAROkJnX+BkzvJ8oQNCR+gIHeB9kDzTeJwodEDoLBM6QgdIMTKljUCbYud+rtABoSN0hM4yEDpNHj6bRRQIHaEjdH4QYPpCoNRfGI3QQegIHaHzMwARMM/YyCwaXuPxZsSeIRA6QkfofDOgjL05mxkLEDpCR+j8AMCUxsneXg5CR+gIHeB9kIy7/F4QOkJH6HwvcLgqvaU8Rnuu0AGhI3SEDrAcI1M27kIHoSN0hI7QAYQOQkfoCB1A6IDQETpCBxA6IHSEjtABhA4IHaEjdHYBCB2EjtAROoDQAaEjdIQOIHRA6AgdoQMIHRA6QkfoHAAQOggdoSN0AKEDQkfoCB1A6ECZIqL/ZNQnCh2hI3TqhedxF/F9SSB0YG0MnCB0hI7QWRXf1wdCB4SO0BE6gNBB6AgdoSN0AKGD0BE6QkfoAEIHoSN0hI7QAYQOQkfoCB2hAwgdhI7QETpCB4QOCB2hI3QAoYPQETpCR+gAQgehI3SEjtABhA5CR+gIHaEDCB2EjtAROkIHEDoIHaEjdIQOCB0QOkJH6JweIHQES5uPFAiV0BE6QmfB8nrTFD8GIHSoIjw+BEstdISO0FnU5/dLl7vieIDQYcWLn9AROkJng0C9OBA6CB2hI3SEDiB0EDpCR+gIHUDoIHSEjtAROoDQ8Q6qGOUxoSN0hI7QWb+OAvVrjGk0QidD/Zd3UFXHhI7QETpCZ/27HEHkPF/j8RpD+rkVOnzlBeJnhI7QETpCZ2X8XR+kGJnyy0IHoSN0hI7QOT1IUXPPNuDPjY7rPooroFzaLf4mIm5/O9y14n71isNrrxE2/HC2bmF6/abzFvqlQFpxn27dY70cEWtDZ2X4Vase6/Xz1q57rNc/JxdiuN1+Hb0+KFPU9Nnu1ucXVvwxhcziiENiXx/xe695v5PO27Cw8e3TbXG/L97nzfRu+X1nQfL48vTi8rDZtGLcl6b35m9cioH7VstkxX1WPNYxvZiv5eWx0d84rv0b19/v/WO99n4bPm7jinm76PYyn57Xnnxd/c2h0305dOJ+9ZvRpBio/+WYXqNZcb8xzce/uU+35m9M8zatuN89BcCaeWtX3q/fYN7eHA5YeOy+dp/bh8dgWbX02L0J8zpGipS4XH7pOZ6WyYr7xWP39XnrY96+Pr00nWnFvA1p/JvlX0eMvDsUufy8/Pr9Yt7eP9b5iPutm7f3yzF/7N5Nb2GZ3FZMb0jjzbxtsp3tV24v25X3G9ZsLyMID3kNaU/yGhLb2V/qme1KbTc8dDXufp/wWHEsukr3O2De4jDJvvMWUlQ1R51btfJ+7cr/y6jXPHZx6ObQ52W5Yt7WLJNy5TK5pfFvdSv/zmHFBrc8eF3tVq6rzX9YJu2Bj90YQbX7vFX/YV3tD97O1hd8DYnH7hebsgfq/n0nI8cKuP+TNF4sD5y3m9D5oPuG0Ol/eIA3hz4vjw+dx4oAr2LeLhs63ZoYuHjo3C4aOuXBodP+3tCJjdwzRUKVfh6EjtAROkJH6AgdoSN0LiGFzZTt3blM6AgdoSN0hI7QETpChyqNIHSEjtAROkJH6AgdoYPQETpCR+gIHaEjdITOCkJH6AgdoSN0hI7QETpCR+iMK0NnPEHojCl01gRSe9XQWTm94eDQGQ8LnfUxcF8Z4P11QyfmbU2kXjR02sOfl+tDZ/AasvDYbY7bIfeJ0i1XBEt/4Lw1az8rY2X89Ss/r+R2yDKJYOlWbjz7lWHVHDNv8ditnbeDHrs2jf0fu4iI6oc/L5tveF7Wax+7Cz8vmzWxeenn5fp1tS++FwAAAAAAAEB55LRi/Lhp4XlTrpoWpe3LaZdleeHnSflz13MeaewrvtPrGe9A2E2dpjMf92I/Qz69dN1e+pjOrsvylh6zEKZ0+1bKNK02X7Y7PW+6NL0yX67ZaIttNGl6VVz+MK1p42XZ58tyh+fnI/ude21f4jGLZVVlJ9JOs9Fsss2KeXsUodxjfc8fn4W/I9b7/6bNlmVdhDq7rd1h+1+9XR/Xq7PnQvfJu6+mDV8X+r8sy0e+jh8ZO8SK9SdWmt1fmNuIkF2n2eZfyb9zWFWz6TSxcdhFE+GWprX9ssw3rnNVmuafDeOxmf3O7pO/oZnN97BxKJZFGHZ63nT/TC9Cp8ymM24UBPVsWfb5skxB0G0U/4+IihSJEb9lun2r7UsTvz9FY4RhFfOT3lodj+0a+fJqs/ioZwFQp1Ft9LVATf745M+ViNjV6nwbkkZEcrz1e4tl2b3Z/mfr4waRH5+nNWTr3fhPjMR0uw2W5S22ja8RxhStdYzDEE/iNPbVLWx095ze9I3x+Nh5D9z0yUak3OEzmWJa4Ta7/r5hVA2fbHT6uBwhsskyjOmVOz92+fTqv8RJueGyzPe4Ten6PFLW+xj04yw+mo23L/csmJpZOFZZtFWxrFcbI9pib0sW5tuI6fVfeHxuG4Rj/jvq2fJq8+BIl/sNt/+3NI3l9XG9MgIx+/sjYOuF9WKNJptetvwiSr8Xjwidwww7h0g/2wgP6d8jxAZ2P+PCRqr5hkNX92JDeejktozyhQ36I40+9g5spl4KnYjK7UToLF6+bxDI5bvHZ8PQKb/w+OW3VRtNL4/sJtu+dDvMX0RjKONQzKYiGmMvRx4Kw87b/wiEbVVvDkFvfVpDn4dOCrt7GmVxeULnPtsb0O78wYnP/FjsQfM3HRaJMc0/O8Xc/cDQKRdCp0zTiV3O+4XOmD1vtgzIZiF0qp1C9flJ6IyfzGu5ceT3u8Xp+xDoIkh2ifAhQurD82TYYV24LbyI7rmXOH+eVmn7Mmy0XX5EeOwZOilC4zDWXB23bbYntY95y9a7WPd+yTk6Qmc4IDziSR5uUdm7id2g+6pihYnleeXQyebztlfo5B/3HsGzZ+jEbvxdXyjjRfKRxrRx6ExphP1C57YQh7csVreatzwK6xQHZXb4uNpqegcuyy4Pjyzexvh52+3/zqHTRYjGievZaRtbn7g+5ieu50cUYt6vS+iELjb6h6gPmF4ZwbG7arbR62PerhQ6YatgXbFhve8fOhECB+wRaNO0hk3nLYKw3D10Iir6FfO/QpxbddC6/4ho2v2djs3icorI6WJd33X7H6GztYiP5ajcTv1mOzamcSlCJ2q33f28ktCnseMJu8vHuQ+InGbXPQLh9s2hM8S8Zude7BM695he7NLfOLarg/YCxkmQEVrVlgHyfhnFdHaOnG7hBNRho9CvFqa39f9IDVkw7nmIs12InDLdtuV077FeZ9v/zUMnvvF94bDtENOIkP2PrzW3hcguY3pv13f2fhv2AefMDLMHv4tp7n6Ozj1+3ufJdfThseytrvdYrruEWxxPj/kqs3MUmo3irZ/NV539320/u33cKDru8bvjraez5TnE7ZtO7zYPjrhu0xDu8mWZTX/Y6IU5llds8JvsebLJ4YHs8e/S5T5fJ9Jt4wbzN8Q2JE0rAiCWb5ywP269LHeM/G5hWZZppNs2m7f7wvZ/eX1cr87mbcj2tk1pdPPXiQ2el/fsuVemMaUxP6xaFYehzI5T7v0hfreYVlTujvqY3v7HRONJHg6at37nt7HnL1RNdv2w8fzkj9d9s2mFIZtet3Bbt+khwBh9tg62xXa6/PHJl+VGgVpm08lPyq023L5EeOTTjABvZtMbt4q4bN4eRWi3XAcWl2VoNtxG3xeWZZWdw7LlOtfn2/836+Na+d+fr19lNr3bRjsMxvnn92TTe+TPy+MBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQvkbzGnWRpJ/b16iKEwMAuL/Gn9d4puj5v2e6bih+MgAAoQMACJ2Qh071Gs0shMrZ5bk6jTC7f4zl+250GK76dPrxc7VwvxjZ73gzz9l8nQkACJ1x4fJjFgHTa/xJY8qiJW6L0UcofLhvVSyJGCqz