Научная рациональность и философский разум. Пиама Гайденко

Читать онлайн.
Название Научная рациональность и философский разум
Автор произведения Пиама Гайденко
Жанр Философия
Серия
Издательство Философия
Год выпуска 0
isbn 5-89826-142-7



Скачать книгу

выше математики. Математическое мышление находится посредине между «мнением», опирающимся на чувственное восприятие, и диалектикой – высшей наукой. Платон впервые пришел к мысли, что число имеет другой онтологический статус, чем чувственные вещи: оно является идеальным образованием. Поэтому после Платона стало уже невозможным говорить о том, что вещи «состоят» из чисел; эти реалии теперь оказались размещенными как бы в разных «мирах»: мире идеальном и мире эмпирическом. Платоновский идеализм возник в результате того, что процедуру идеализации как способа образования научных (и прежде всего математических) понятий Платон смог впервые осознать, допустив существование некоторого идеального мира, мира чистых идей. Как отмечает А. Сабо, понимание чисел как идеальных образований послужило логико – теоретической базой для дальнейшего развития греческой математики. «Числа, – пишет он, – являются чисто мыслительными элементами, к которым невозможно подходить иначе, как путем чистого мышления. Следовательно, можно видеть, что та греческая математика, которая у Евклида стремилась избегать в своих доказательствах только наглядного и видимого, тоже хотела понимать свой предмет как такой, который полностью лежит в сфере чистого мышления. Именно эта тенденция науки сделала возможным прекраснейшие евклидовы доказательства…»18.

      Это утверждение Сабо представляется вполне справедливым по отношению к VII книге «Начал» Евклида, посвященной арифметике; что же касается тех книг «Начал», где рассматривается геометрическая алгебра, т. е. где Евклид имеет дело не с числами, а с геометрическими объектами, то по отношению к ним дело обстоит несколько сложнее.

      Обратимся еще раз к свидетельству Аристотеля. Касаясь платоновского обоснования математики, Аристотель высказывает два разных и, на первый взгляд, трудно совместимых утверждения: во – первых, он подчеркивает, что числа у Платона суть идеи (т. е. принадлежат к сфере идеального бытия); а во – вторых, он неоднократно заявляет, что предмет математических наук составляют некоторые «промежуточные вещи»19, находящиеся как бы между сферами идеального и эмпирического бытия.

      С другой стороны, как мы помним, и сам Платон помещает математику посредине – между «мнением», имеющим свой источник в чувственном восприятии, и высшей формой знания – философией, или диалектикой. Но, может быть, никакого противоречия не будет в сообщениях Аристотеля, если предположить, что Платон и его последователи вовсе не отождествляли понятие числа и «математического объекта»? Но тогда – что же такое «математические объекты», или, иначе говоря, «промежуточные вещи»? Тот же Аристотель дает некоторое указание, в каком направлении следует искать ответ на этот вопрос. «Что же касается тех, – говорит он, имея в виду Платона и его учеников, – кто принимает идеи… они образуют геометрические величины из материи и числа (из двойки – линии, из тройки – можно сказать – плоскости, из четверки – твердые тела…)»20. Легко видеть, что здесь выявляется