Стоматологические конструкционные материалы: патофизиологическое обоснование к оптимальному использованию при дентальной имплантации и протезировании.. А. К. Иорданишвили

Читать онлайн.



Скачать книгу

титана в физиологическом растворе составляет всего 0,043 нм в день [K.D. Allard, M. Ahrens, K. Heusler, 1975].

      Таблица 3

      Сроки биологической деградации биоактивных материалов

      Кроме того, эти материалы не подвергаются остеокластической резорбции и поэтому являются небиодеградируемыми.

      Кроме растворимости любой материал в той или иной степени подвержен диссоциации – распаду молекул в жидкой среде на ионы (атомы и молекулы, потерявшие или присоединившие электроны).

      Суть диссоциации как физико-химического процесса заключается во взаимодействии молекул материала и растворителя (например, воды, тканевой жидкости или слюны), которое приводит к ослаблению взаимного притяжения положительно и отрицательно заряженных ионов, что вызывает распад части молекул растворяемого вещества на ионы.

      Соотношение между числом распавшихся на ионы молекул и общим количеством молекул вещества называется степенью диссоциации [Б.М. Яворский, Ю.А. Селезнёв, 1989; Ю.А. Ершов и др., 1993].

      Степень диссоциации и коррозия, под которой подразумевается разрушение или растворение вещества под химическим воздействием внешней среды или жидкости, являются одним из основных показателей пригодности того или иного материала для изготовления имплантатов.

      В соответствии с Европейским стандартом (EN ISO 8891, 1995), коррозия материала, пригодного для изготовления имплантатов, должна быть менее 14,3 мкг/см2 в день. Согласно тестам, коррозия титана и его сплавов составляет 11 мкг/см в день [Б. Венц, 1998].

      Биологические свойства имплантационных материалов

      С биологической точки зрения материал имплантата, его химические элементы а также возможные продукты, образующиеся при его взаимодействии с биологической системой, не должны:

      – вызывать патологических изменений в окружающих тканях во время их регенерации;

      – нарушать гомеостаз организма, жизнедеятельность органов и тканей в течение всего периода функционирования;

      – оказывать токсического, канцерогенного и аллергического воздействия на ткани и организм в целом.

      Диссоциация приводит к диффузии ионов материала имплантата, что, естественно, оказывает влияние на процессы жизнедеятельности как окружающих имплантат тканей, так и организма в целом [А.И. Воложин, Г.В. Порядина, 1998].

      Если суммировать химический состав биосовместимых материалов, то можно составить перечень ионов неметаллов, которые широко представлены в организме человека [Ю.А. Ершов и др., 1993; P. Марри, Д. Греннер, П. Мейес, В. Родуэл, 1993] – это Са2+, N+, H+, С+, сО32, РО4.

      При этом можно допустить, что в результате диссоциации биосовместимого материала незначительное увеличение концентрации этих ионов не будет оказывать существенного влияния как на окружающие имплантат ткани, так и на организм в целом.

      Некоторые металлы, входящие в состав биосовместимых материалов, например, железо, также широко представлены в организме и согласно классификации Ю.А. Ершова и соавт. (1993) являются макроэлементами. Содержание