Название | Квант |
---|---|
Автор произведения | Джим Аль-Халили |
Жанр | Физика |
Серия | Prisma |
Издательство | Физика |
Год выпуска | 2003 |
isbn | 978-5-386-12495-3 |
Решение уравнения Шрёдингера гораздо полнее. Это математическая величина, известная под названием «волновая функция» и обозначаемая греческой буквой Ψ (пси). Если вы ищете корни всей квантовой странности, то вы их только что нашли: все они содержатся в волновой функции.
В элементарной алгебре всегда существует неизвестная величина х. Представьте, что х – это положение частицы: «х обозначает место», где нужно копать. В более продвинутой алгебре значение х может зависеть от значения второй неизвестной, скажем t, которой обычно обозначается время. Таким образом, если, к примеру, t=1, то х может быть равен 4,5, а если t=2, то х=7,3 и так далее. Само собой, я просто назвал эти цифры наугад. Так мы решаем уравнение движения для классической частицы. Вот только, так как частица существует в трехмерном пространстве, нам необходимы три числа, чтобы определить ее положение: х, у и z. Суть в том, что х, у и z – это просто символы, которые заменяют определенные числа, это не настоящие «величины».
Волновая функция в уравнении Шрёдингера немного похожа на них. Она представляет собой неизвестную величину и может быть вычислена для любого момента времени, чтобы описать состояние квантовой частицы. Под «состоянием» здесь я подразумеваю все, что мы вообще можем знать о частице.
В физике мы всегда пользуемся математическими символами, чтобы описать некоторую величину или свойство системы, которую мы изучаем. Мы обозначаем величину напряжения буквой V, давление – буквой Р и так далее. Отличие квантовой механики заключается в том, что не существует прибора, который мог бы измерить квантовую функцию подобно тому, как мы измеряем давление и напряжение. Хотя концепция «давления» несколько абстрактна в том смысле, что это величина, которая описывает коллективное движение молекул газа, ее существование хотя бы можно ощутить физически. В отличие от существования волновой функции.
Уравнения движения Ньютона действительно так точны и надежны, что с их помощью можно на много лет вперед предсказать орбитальное движение планет и их лун. Эти уравнения использовались НАСА для расчета траекторий ракет, летящих на Луну и обратно. Во всех вышеприведенных примерах определение текущего состояния физической системы и воздействующих на нее сил в принципе позволяет нам точно определить все будущие состояния этой системы.
Так почему мы не можем применить то же самое уравнение для описания движения микроскопической частицы вроде электрона?