Название | Социальная справедливость и город |
---|---|
Автор произведения | Дэвид Харви |
Жанр | Зарубежная публицистика |
Серия | Studia Urbanica |
Издательство | Зарубежная публицистика |
Год выпуска | 1973 |
isbn | 978-5-4448-1020-0 |
Комбинирование социальных и пространственных процедур в одной концептуальной рамке статистического исследования все же имеет шанс на успех. Рассмотрим следующий пример, в котором мы попробуем предсказать распространенность некоторых социальных характеристик в пространстве – скажем, численность цветного населения в ряде переписных участков города. В рамках этой гипотезы мы можем сформировать предположения относительно численности небелого населения на каждом участке, представленной ячейкой в таблице данных. Чтобы проверить эту гипотезу, нам нужно показать, что она правильно указывает количество людей на каждом участке. Мы можем проверить это, сравнивая распределение ячеек по частотным характеристикам, как они представлены в гипотезе и как они выглядят в реальности. Мы можем выяснить, есть ли значимая разница на пятипроцентном уровне или ее нет. Но нам надо также показать, что модель предсказывает правильное пространственное распределение предсказаний по участкам. Мы можем использовать цветовой тест смежности (k-color contiguity test), чтобы показать пространственное распределение, предполагаемое в гипотезе, и пространственное распределение в реальности. Если эти тесты совершенно независимы друг от друга, мы можем увеличить эти два уровня значимости по правилу мультипликации (умножения) и сказать, что общий тест показывает уровень значимости[6] 0,25 %. Но очевидно, что тесты не независимы друг от друга. По сути, объединение двух тестов таким образом может вовлечь нас (и часто так и бывает) в конфликт со статистической логикой. Тесты социальных процессов основываются на независимости каждой единицы данных, а пространственная статистика явным образом озабочена измерением степени пространственной зависимости в данных. Поэтому мы автоматически привносим в измерение социальных процессов проблему автокорреляции, и это означает, что мы нарушаем основания тестирования, если только как-то не контролируем этот процесс (фильтруя данные и т. д.). Подобная проблема возникает почти на каждом участке работы в зоне взаимодействия дисциплин. Она далека от решения и часто вообще не замечается. Мне всегда казалось странным, что, например, многовариантные методы районирования полагаются на измерения корреляции, которые, если они считаются значимыми, требуют независимости данных наблюдения, когда целью всей процедуры является группировка единиц по регионам, имеющим сходные (и поэтому пространственно автокоррелированные) характеристики. Метод и цель в этом случае
6
Уровень значимости – это такое (достаточно малое) значение вероятности события, при котором событие уже можно считать неслучайным. В данном примере: 0,05×0,05=0,0025≡0,25 %. –