Бормотание художественного множества. Глобальное искусство, политика и постфордизм (сборник). Паскаль Гилен

Читать онлайн.



Скачать книгу

с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

      Примечания

      1

      Boltanski L., Chiapello É. Le nouvel esprit du capitalisme. Paris: Gallimard, 2004, р. 568.

      2

      Крайности сходятся (фр.). – Примеч. перев.

      3

      Фамилии и даты в квадратных скобках отсылают к работам указанных авторов, приведенных в библиографии в конце книги. – Примеч. ред.

      4

      Цит. по: Вирно, П. Грамматика множества: К анализу форм современной жизни. М.: Ад Маргинем Пресс, 2015. С. 82.

/9j/4AAQSkZJRgABAQEASABIAAD/2wBDAAIBAQIBAQICAgICAgICAwUDAwMDAwYEBAMFBwYHBwcGBwcICQsJCAgKCAcHCg0KCgsMDAwMBwkODw0MDgsMDAz/2wBDAQICAgMDAwYDAwYMCAcIDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAz/wAARCAMFAjoDAREAAhEBAxEB/8QAHQABAAICAwEBAAAAAAAAAAAAAAUGBAcBAgMICf/EAF0QAAEDBAEDAgQDAwgGBgQFFQECAwQABQYRBwgSIRMxFCJBURUyYUJxgRYZI1JXkZTRCRcYYpahJDNVVnLSJTSCkjVDRFNjc3WisrMmNzg5sbS1wSc2RlR0o6TC/8QAHAEBAAIDAQEBAAAAAAAAAAAAAAMEAQIFBgcI/8QAShEAAQMCBAQDBQYFAQcDBAAHAQACAwQRBRIhMQYTQVFhcYEUIjKRoRVSscHR8BYjQlTh8TNTYnKSk6IkNDUHJYKyQ8ImgzZjc//aAAwDAQACEQMRAD8AqdfP1+pEoiURay5K6mWeNcslWpzEMyuvwqELMuBBDsZYUgK8K39N6P2INXoKAyszh7R4E6rzeI8RtpJzAYJHWtq1txtffw6rtaeqrGJvC5zmX8bbbSZDkRDTyUrkPOpOu1CUkgk+SPPgAk61R2HyibkDUrMXE9G7D/tJ92suRY7kjoLfvuoHGOt/Hrte4UW7WXI8Zi3RQTCn3KOExn960SoflGz7+R7EkA1M/C5A0ljg624G6o03GlK+RrJo3xh3wucND69PqPFXqBzLb7hzRPwdMWYm5W+Am4LkHs9BSFdmkjz3d3zj6a8GqhpnCET30Jt4rtsxiJ2IOw4A5mtzX0tY29eqwp/ULY7RyRfsbmNy4rmOWr8XlzFhJjhntQSBo9xV848a8mthRSGNsg/qNgFDJj9NHVy0klxy25ydLW09b69lQpHX7j7NsE8YtmZtjjnptzFRG0MOHegAoq1vwfG9+DVsYRITlztv2XDdx1ShnM5MmW9gbC3zutkw+Z7fN5nfwhMWaLixbU3NUghHoFshJ7R57u75h9NVSNK4Qc++l7L0TMYidiBw6xzBua+lraevVQt46nLVC5PuWKQbXebzPs0R6VOciNpLTBbaLhb2T5WdBI9h3HW9+KlbQvMQlcQAdr+apzcSQtrH0UbHPcwEutsLC9vM7dr6Lph/V1g2WYULy5eodpUEuKVBmyG0TE9m/HYCd9wAKde+xSXDp2PyZb+I2WtJxXhs9P7QZAzf3XEZtPDx6KGX1uY21g9qvKrTkXqXyQ6xb7ehhDkqUGylKnAArtCe5XaPOyUkAeKlGFymQsuNNz0VM8Z0gpmVBY+7yQ1thc20J3ta+nmpnijqhtfKuYXCyJst+sUy2QzOkfijaGQhsFI8ju2PCgfI1oVFUUDomB+YEE20VzC+JYa2d1Py3Mc0ZjmAGmnjfqq1cOvLHEzZK7bYMpvVngrKJN0iRR8O2B+0Nn2/8RT40frU7cJksA5wBPQ7rnSccUmYmGJ72N3cBp+/OytmTdT+N2DB8dyGOJl2tuSzkwIyoyUhTbh3v1Asjt7SCCPcGq8dBK6R0Z0LRddSo4lpI6eKqZd7ZHBot38b7W6rO5v56tXBkWCmbGn3O43V5TEKDBQFvSFJ1sjfsNlI+pJIABrWlpHTk2NgNyVPjWOQ4aG8wFznGwa3cqT5T5PicScdzckuEaXIiwEtqcZY7fVPepKQB3EDwVefP0qOCndLII2nUqxieJMoaV1XKCQ22g31Nuql7Lf275jMS6NNvBmZERLQ329zgSpsLCdD3Vo60PrUbmFriw9NFbhnEkLZgNCAfHUX+a1dK6xrLbcDtWRzLFkkO23O5u2sqeZQhcVaNHuWkq32kFR8bPyKHuPN4Ya8yGMOBIF/NeadxdTspmVckbw1zi3UDQjqddvLsVIch9XGGYNDhriXBnJpE6SIrcWzyGn3QT7KIKgAneh+pIrWHDppCbjKBrcqev4rw+na0xvEhcbAMIJ/FR+T9ZNkseZXKxwcfyrIZVocLMtdshh1tlwHSk73s6OxvWiQdbrdmGSOYHucGg7XKgqeL6eOofTxRPkLNDlFwD23Vq4f5xt3M2CS8gt8OfEiw33WFtSQgOlTaAtWu0kex17+9V6mkdDII3G5XTwnGosQpnVUTSACRra+gv0XpxVzXauVuNDlbDci2WtCng4ZpQlTSWvzqUUkgDXn3rFRSvik5R1Om3itsMxmCto/bWgtZrvbS2+y10rr7xr11SE2DK3cfS76P4wiIPhyrevbe9fpvu+nburv2RLtmGbtfVefPHVJfOIn8u9s9tP39fBXHPeo+34dAs0yDZchymDfI6pUeTZo3xDSUAgfMdjRO/b9DvyKrQ0Tnlwc4NI01XXruIYqdsckUbpWvFwWC4sobFer+3ZjaMlkwsYygvYq0h+dDW20mSEKUpKilHd7o7SVA6Ogdb1UkmGuYWhzx723ZVKXiyKoZM+OF94gC4aXtfXS/TqOyzF9W2NOYZi98jM3CZGym4C1tttBHqQ3/G0ugq8a7h7b2CCNgisDDpM7ozu0X8x4KU8VUhp4algJErsota4PY6/h6LOY6lrFN5LvWOxmJkhrG2Vv3W7JKEwICUA9/coq7iQodukg7VvW9GtDQyCJsh/q2HUqZvEdM6rkpWAkRglz9Mrbb3N7+Gg38lTl9e2Ol1clvHMuesDbhaVd0Qx8ODsDet+36EhX01urP2RJtmGbtdck8c0vxiKQx7Z7afv6+CvF66iLDa7phTEcSbkxnjhbt0qN2+knykdy+4hQ8q9gNgggjdVG0chDydMm67U3EFMx9O1t3Cf4SNum99eqzs75lt+AZzi1glRZj8rLJCo8Zxns9NlSSkEr2QdfMPYGtYqV0kb5AfhU1djEVLUw0zwSZTYEWsNt/moF7qosEW15xLeiXJlvBJIiSgoN90xxSlISlkd3nak/ta9/31L9nyEsAI9/UeHmqJ4npgypkc0gQGx21NyBbXrbrZSFu6hrLd+Qsbx6KxNfdyi1fi8SUkI9BLXatXarz3d3yEeBrdauoniN0h/pNirEeP08lVDSsBJlbnB0tbXfrfRZvO0NqbxpNS7kcXEyh1lxq5yQgssOJcCkBQX4IUR2/fz4rSkJEo93NvopsbY11G4OlEWos42sCDpe/fZUbiLnO+ZBy7FxqfkGB5PFl2+TN+LsHf3slooAS4CopSVdxOv+dW6ikY2HmBrmm4Fj4riYVjdRLXNpJZYpAWuN476WtodbC91umuWvYpREoiw8gu4sFimzixIlCEw4+WWE9zr3akq7UD6qOtAfc1sxuZwb3UU8vKjdJYnKCbDc2Gw8Vpqb1zWu0/Dmfhmc25qS6hhDsqEhlHco6A2pQG/rr9DXTGEvN8r2nyK8e/jaGO3Np5Ggm1yAN/Mqy8v9Udk4oyhNgbgXfIchU36n4fbGPUW2kjY7ifbY86AJA8nWxUFNQPlbzLgN7ldLFeJqeim9lDXSSb5Wi/z/AGVzxz1TY7yRZb49HYuUG447GdlzbZMaDcpLaEkkp86Ptr3BBI2BsUnoJIy0GxDtiNkw/iekq45HMBa6MElpFnWH0/TqpTAudbZyDw+/mcWJPYt8dqS6ph7s9chgEqA0SnZ1481HLSOjm5JOun1VqhxuGqoDiDGkNAcbG1/d+irl16xsatPHOPZAuFeXV5QpxNvtzLSHJbnYvsUSArtA3rXk7JAHmp24bKZHRgj3dz0XOl4upGUkVUWuPNvlaAC7Q2PWyYR1dWrNMmn2hWPZNaJtvtj91cRcGEMqLTSe4gJ7t7I9tjX61iXDnsaH5gQSBp4pR8Vw1EzoDE9jmtLveAGg179eisGAdQNkzziKRmpTKtdmi+sXviwn1EBrXcdJJB3saAOyTqopqOSObkbk9vFX6HHqepoTiOrWC9776eX0VVR1pWNrELLf5Vkv8Oz3y5O25mS6lvTRR2f0ix3fkIUo/Lv/AKtX1GqsfZche6MOBIF1zP4wpxBHUvjcGPcWgm3S2p1216X2Kl886tMPw425qFNbyiZdJYiMxbO+0+4FHQBVtQABJAH3JqKLDpn3JGUAX1Vqu4qoIMgjdzXONgGEE/j6KIyTrVsFoya6Wy32LKMgNmUW5km2xEusMqTsKHdv2BSod3gHR1sealjwuRzQ5zg2+11VqOMaWOZ8MUb5Mm5aLgW369O+ymWuqzF2+GIubzDMgW6c64xGjOISuVIcQopKUJSSCflJ3vQHkkVF9ny84wDUj5K2OKKMYe3EZLta4kAbuJB2AH7A3UNh/WnYb7lUK03ey5Fir1zX2wnbpHCGZGyAn5vdOyQN6I2QN+alkwuRrS9jg629lUpOMaaSZsE8b4i7YuGh7eV/l4q7WPmOBfeYb3hbcSai42KK3KeeWE+i4lfZoJ0e7fzj3A9jVV1K5sLZidCuxBi8UtfJh4aczACTpbW23Xqo7GOoi0Zpy/PxC1xLjLetKHPjLglsCIy4jQLfd7kk7APgEpOt6rd9E9kImcRrsOqgpsfgqK91BC0ksvd39II6fl02KkJ3Mlvgc0wcHVFmm5ToCriiQOz0EoT3/KfPd3fIfpryK0FK4wme+gNlO/F4m4g3DiDmc3NfS1tfXovTlzlmNxBZIM6Vbbrc0TpzUENwGfVcQV7+Yj7DXsPJJAHvWKanMzi0ECwvqtsWxRlBG2R7HOzODfdFzr1UGz1Q4xF5KvmL3d5WPTbJrb1ydbajywdaLau76pUlWiAdH9DU3sEpibKz3ge24VIcS0bauSjnPLczq4gA+Rv66rAV1hYmq/5FGZ+Nl27GIYmS7pGSh6IsEoSlDZCu5SlLWEjxokHzobrb7NmytJ3cbAdVB/FtFzZWNuWxi5cLFvQADW5JJsPVVyZ19WO32pqe/iOasQJBAakuRW0Mu72R2rKu07APsfpU4weQnKHtuue/jqnYwSOgkDTsSBY+RvZbH5f5qt3DON2653CLOlM3OY1CbRG7O5CnElQJ7iBoAedeao01K6dxa02sLr0OLYzFh8TJpWkhxA0t18135m5tsnBtkZl3hUlxyY8Y8SLFb9R+W4PcJGwPHjZJ+o+ppTUr53WZ0WcYxmnw6MPnvcmwAFyT4KscZdW1jz/MY+PTrXfMWvUz/wBWj3Vj0xI99BKvHkgHQIG9EAk1PPhz42GRpDgOy5uG8VU1VUClkY6J52Dha/kf34KNyPrQhYs/NEvCc7RHgOLbckmAlLGkqKe/uJA7T9CfuK3ZhjngWe3XxVeo4wjhLs9PLZt9cumh3v2Uvcuqyy2NzEnbjbbvb7ZmMdt+JcnQ2YzBWP8Aq3SFEpUNp34I0rfsCRG3D3uzhpBLdx19Fbk4op4zAZWOa2YAhxtYX6HXQ9/nss49S2Pxbzm8SYiXBRgfb8dIdCC2+VEhKWgCSVEjQBA2SK09hkLWFuufb/Km/iOlElQyS7eR8RNrG+1tbqJldYGPWrjKBk9xt95tzd4dU3bIDjaFzLglOtuISlWg3s67lEA+Nb2NyDDZDKYmkG256D/Kqu4spWUbayVrmh5s1ptmd4gA7eJTjfq7smdZixj0+1X3F71LG40e6MdgknzpKVfRRA8Agb8gHdJsOkYzmNIcB2TDuK6epqBSysdE87Bwtfy8fTXZWrAOZbfyHmeU2OLFmMScTkpiyXHuz03lEqG0aJOvkPvr3FQS0zo2MeTo7VdKgxiKqqJqdgIMRsb2sd9vl1UG/wBUFmYhZ4+bfdCnj91LM4AN7kkrKNtfN7bH7WqlFA8mMXHv7f5VN3EtOG1Lsrv5Bs7bXW2mv42WbZuoywXjLcRsgEpifmVuFyiJcCe1lKgShDhB8LVpWtbHy/qK1fRSNY9/RpsVNDxBTSTwU+odM3MPDsD4nW3ks7hvma3812a4zbdFmxG7bOXb3Eye3uWtABKh2k/L5Hv5rSppXQODXHcXU+D4xFiMbpIgQGuLdbbjyVwqsuslESiJRF869RXIv4DyHdoR5oexPtjo/wDQqbWp4N9zIP5wNf0m9/p3V2qKHNGDyM3jfx/JfP8AiDEOVVvj+0OVoPcyk9O/j+a1JCsUqT0i4PfURXLhaMbyaXJucZsd49Irb+ZX07R2lBJ8D1PPjddAvHtckZNi5osvKsgecCpqkNzMjkcXDwuP0t6rYvVf1AYpztxfExjFHnMivl6mMriMMsOBcPROyoEeFaPb2j6Ek+BVPD6OWCQyy6NA18V6DijHqLEqNtHRHmSPIsADp/npbtrsvCZg+QXzrGuFps2Uu43dYWLwg/NaZTIU8EMsIUnSj7KVo7/T9ayJY20Qe9uYFx026lRvoqqTHnwU83Le2Jt3AXvYNBHqeq6YTxbKvnVFnWJ5Rf5GQSbjiwZkXD0UsvFKywUEI8gFHy6++qzNUBtLHLE21nbfNYosMfJjNTRVspkLorF1rHXLbTwVc6iuI864i4QhW275dbrviNvnsMRIaI5adbUe8oOynYA+fx3n3qajqIJpy5jLOIOq5/EGE4lQYc2KecPha4AC1j1t06a9SrxkHJth4q6651yyG5M2yArGo7HqrSpfzqS2QNJBPkJP0+lVWQSS0AbGLnMV2p8SpqLiR01U/K3lgX8TbspfoYlIyeVyNkqFB8XnIFdjvbpLjYClgffX9IPB/So8VGTlxdmq1wU4TGrqxrnk38NT+ey0XzBhsfjDkHL8HYskGbcMhnRHbBKcaBeitOuElLZ9xvYR+naa6tNKZY2Tl1gAcw8v3deKxajZR1U+HNjBdI5vLNtQHHYfh6Lc3P8AxpYeKcf47fbzRnCrtijaodtlvRFyW5JACnT2oBIV3Eq2dghZBFcyknkldICzMHakX+S9fjuHU1FFSuFRyXxXDSQSD1Og6317aqhcSvXHlrlnkpiNk0XKrpdcQdjM3NiN8MiSr+hSlAbUAU612bI/WrlRlhhiJblAdt8/9Vw8KMtdW1bWTCV7oiA4C1/hFrG1uyuHTz1PYVxdwCiw351drvFkS+zNtbsZQdmrUtRIA1olQISruI1rz481VrKCeWo5keoNrHsutgHEuHUWGCmqTley4LSDdxufx2N7WWsZVmkYV0v4fOujJt0S4Zt+JR23Nj04/pAd2j518iiPqQAfqKvtcH1T2s1IZb1uvNuhfT4PTyTDKHTZh/y2/wAaeGq2p/rIsXPPXDh0vH7gzdbbZLZJfLqELAS4PVPsoAgjub0QPqK5/JfT0LxILEkL0/2hTYlxFTvpXZmsa431317+Y1XXqw6ncDz3gfILLaMjizLnIDSW2A06kqKHkKV5UkDwEn6/Ss4fQzxzte9th/hY4o4kw2pwyWnglBebaWPQi+4W9+LDvjHGyPb8Jif/AHBFcmo/2rvM/ivb4Z/7OH/kb/8AqFC9SHGv+trhm92hKPUmej8TC+4fa+dGv36Kf/aqWin5UzX9OvkVT4hw727D5IB8VrjzGo+e3qvmXpXsdv5m5oxeTGssG3RsKtKJFzUw0EfGTUrUlDi9ftFXYfP/AM2qu5iDnQwvBNy86eAXzjhiGLEMQheyMNELQXW6uubE+N7fIr2vGXM4Z1Jchtxs5f4sacmAFCYjkoXJYJJc7QNI2SVj9HPH1rDYy+mjJj5mnlZbTVTafFqoNqfZRfsXZj38O/rorR0ocsY9xh0x3B+/XVmC1crzOjRnFIUsPu/DtnXyg6OjvzUGIU8ktUBGL2A/FdPhfFKWjwd7ql+UOe8DfU5R2Wf0M81YzZ+IIeMu3D1shQ7NlC3MMLdedQkFw9uh2qJSk6TvZ9q0xalldMZLe7pr9FPwVjFJHQNo3OvJd5ygEkjfTodOl1IZR1kccXnhG8QmUKYfkxn4bVgdh+msuK7gnaUjsSkqIVsHYP8A