Название | Логика. Краткий конспект |
---|---|
Автор произведения | Юрий Юрьевич Черноскутов |
Жанр | Философия |
Серия | |
Издательство | Философия |
Год выпуска | 0 |
isbn | 9785392103607 |
Логика – наука о формальных законах правильного, корректного, доказательного рассуждения.
Рассуждение представляет собой переход от одних высказываний (суждений, предложений, утверждений), данных заранее, к некоторым новым. Элементарный шаг рассуждения называется умозаключением. Центральный вопрос логики состоит в том, когда такой переход делать можно, а когда нельзя, когда умозаключение является правильным, а когда нет. Центральный ответ состоит в том, что умозаключение является правильным в том случае, если оно удовлетворяет отношению логического следования. Чтобы объяснить, что под этим понимается, требуется ввести некоторые термины, без которых никогда не может обойтись изложение логики.
Исходные высказывания-рассуждения называются посылками. Число посылок ничем не ограничено. Возможны умозаключения из одной, двух, трех и т. д. посылок. Но множество посылок может быть и пустым (например, аксиомы геометрии не выводятся ни из каких других высказываний и могут считаться следствием из пустого множества посылок). Обозначим множество посылок как {X}, где X = x1, x2…, xn; xi – некоторая посылка. Новое высказывание, получаемое из исходных в результате рассуждения, называется заключением (или следствием). Обозначим его через А. Тогда тот факт, что некоторое высказывание А является логическим следствием из множества посылок, символически записывается следующим образом:
{X} |= А,
где |= – знак отношения логического следования.
Высказывание А является логическим следствием из множества высказываний {X}, если, и только если истинность элементов {X} гарантирует истинность А.
Иначе говоря, заключение А логически следует из посылок {X}, если исключен случай, когда все посылки, входящие в {X}, истинны, но заключение А ложно.
При определении отношения следования нами использовано понятие истинности высказывания. Здесь мы, оставаясь в рамках логики, приходим к пределу анализа. Раскрытие природы такого важного понятия, как «истина», не входит в задачу логики. Ее интересует переход от одних высказываний к другим, сохраняющий истинность. Подчеркнем: именно корректность перехода, а не истинность того, между чем осуществляются эти переходы. Логика исходит из того, что истина есть некая данность, которую мы в состоянии отличить от лжи, не вникая в природу и происхождение этой данности. Занимаясь этим вопросом, мы выходим за границы логики и вступаем в область теории познания, методологии или пограничную между логикой и ими.
При определении предмета логики было подчеркнуто, что она ограничивается формальными свойствами правильных рассуждений. Попытаемся объяснить, что такое форма рассуждения, на следующих примерах.
Пример 1.1
Санкт-Петербург севернее Москвы.
Москва севернее Киева.
Следовательно, Санкт-Петербург севернее Киева.
Пример 1.2
x >у,
у >z,
следовательно, x > z.
В этих двух несложных рассуждениях речь идет о совершенно разных вещах. Пример 1.1 содержит рассуждение из области географии, пример 1.2 – из области математики. Однако сам ход рассуждения в обоих примерах представляется одинаковым. То, что является общим для этих примеров, – это и есть их логическая форма. Если отвлечься от содержательных терминов, входящих в эти рассуждения (таких как «Санкт-Петербург», «Киев», «севернее», «>» и остальных), и заменить их переменными, то мы сможем получить запись, выражающую только форму обоих рассуждений. Она будет выглядеть так:
а R b,
b R c,
следовательно, а R с.
Здесь буквы а, b и с обозначают объекты, R – отношение между объектами.
Имея дело с такой записью, которая принимает во внимание только форму рассуждения, легче обнаружить,