Название | Металлический проводник с знакопеременной контактной разностью потенциалов и новые технологии |
---|---|
Автор произведения | Владимир Игоревич Хаустов |
Жанр | |
Серия | |
Издательство | |
Год выпуска | 2025 |
isbn |
Благодаря конструктивной простоте, высокой термостойкости, масштабируемости и многофункциональности данный проводник представляет собой основу для нового класса энергоактивных металлических материалов. Он может быть использован как в компактных датчиках, так и в силовых установках – в обмотках трансформаторов, генераторов, электродвигателей, а также в линиях электропередачи и термогенераторах.
В данной работе рассматриваются физические основы действия проводника, его взаимодействие с различными формами энергии, а также анализируются практические направления применения в энергетике, приборостроении и системах мониторинга. Использование такого проводника открывает перспективы для создания устойчивых, экономически эффективных и умных энергетических решений XXI века.
1. Биметаллический проводник с знакопеременной контактной разностью потенциалов
Проводник с последовательной знакопеременной контактной разностью потенциалов – это инновационное техническое решение, состоящее из последовательно соединенных сегментов разнородных металлов, см. Рис. 1.
Рис. 1. Схема проводника с знакопеременной контактной разностью потенциалов.
Работа проводника основывается на уникальных свойствах переходов между разнородными металлами, которые в такой структуре становятся чувствительными к внешним воздействиям, таким как тепло, электромагнитные и электростатические поля.
Вариант исполнения проводника с последовательной знакопеременной контактной разностью потенциалов представлено на следующем Рис.унке.
Рис. 2. Проводник с знакопеременной контактной разностью потенциалов.
Механизм работы
Работа проводника с последовательной знакопеременной контактной разностью потенциалов основывается на сложных взаимодействиях, внутри переходов между разнородными материалами и между такими переходами, которые перераспределением потенциалов откликаются на внешние температурные, электромагнитные или электростатические поля. В таком проводнике проявляются следующие интереснейшие свойства:
Проводник без внешнего теплового воздействия проявляет термоэлектрические эффекты благодаря внутреннему перераспределению тока и местным изменениям температуры. Это позволяет системе адаптивно собирать естественный тепловой шум и использовать его для генерации напряжения.
Контур из такого проводника при взаимодействии с электромагнитными полями увеличивает выходное напряжение на величину, зависящую от перераспределения токов между переходами разнородных материалов.
Замкнутый контур такого проводника проявляет небольшой градиент напряжений и температур в замкнутой структуре проводника. Это противоречит классической теории, которая предполагает нулевую ЭДС в замкнутом контуре, и подтверждает, что в системе происходит стохастическое перераспределение микроскопических тепловых флуктуаций.
Взаимодействие с электростатическими полями приводит к перераспределению потенциалов меду переходами, что проявляется в наведении дополнительной ЭДС на границах контактов различных металлов.
Большое количество точек с контактной разностью потенциалов на единице длинны проводника позволяет определять место изменения термодинамического равновесия на поверхности или в объёме. Для этого в проводник подают электрический импульс с известными временными и амплитудными характеристиками и сверяют его с выходным импульсом.
Большое количество точек с контактной разностью потенциалов на единице длинны проводника позволяет управлять небольшим локальным изменением температуры отдельных контактных разностей потенциалов на плоскости или в объёме. Для этого в проводник подают с обоих сторон электрические импульсы с определёнными фазовыми соотношениями.
Таким образом, благодаря сложным взаимодействиям тепловых, электронных и электромагнитных процессов на границах контактов различных металлов, металлический проводник с знакопеременной контактной разностью потенциалов способен генерировать микровольты напряжения, используя не только внутренние, но и внешние энергии, что открывает новые перспективы для создания энергоэффективных устройств и систем, а также управлять или диагностировать локальными изменениями температур на плоскостях или в объёме.
Основные направления применения:
1. Термоэлектрическая генерация (TEG).
– Преобразование тепловой энергии в электрическую с использованием температурного градиента и эффекта Зеебека.
– Замена или дополнение полупроводниковых TEG–модулей с преимуществом в температурной стабильности и низкой себестоимости.
– Применение