Название | Космический ландшафт. Теория струн и иллюзия разумного замысла Вселенной |
---|---|
Автор произведения | Леонард Сасскинд |
Жанр | Физика |
Серия | New Science |
Издательство | Физика |
Год выпуска | 0 |
isbn | 978-5-496-01166-2 |
Этой обратно пропорциональной зависимостью между длиной волны и энергией объясняется одна из важных тенденций в физике ХХ века: строительство всё более и более мощных ускорителей. Чем глубже пытаются проникнуть физики в структуру материи, исследуя молекулы, атомы, ядра, кварки и т. д., чем более мелкие объекты они исследуют, тем меньшие длины волн им нужны для получения чётких изображений этих объектов. Но уменьшение длины волны неизбежно требует увеличения энергии квантов. Для получения таких высоких энергий частицы приходится ускорять до огромных кинетических энергий. Например, для ускорения электронов до огромных энергий приходится строить гигантские по размерам установки. Стэнфордский линейный ускоритель (SLAC), располагающийся неподалёку от того места, где я живу, может ускорить электроны до энергий, в 200 000 раз превосходящих их массы. Но это требует машины примерно в две мили длиной. SLAC является по существу двухмильным микроскопом, который позволяет наблюдать объекты в тысячу раз меньшие, чем протон.
По мере того как на протяжении XX века физикам становились доступны для изучения всё более мелкие объекты, ими обнаруживались всё более неожиданные вещи. Одним из самых драматических стало открытие, что протоны и нейтроны не являются элементарными частицами. Расстреливая нуклоны высокоэнергетичными частицами, учёные сумели различить составляющие их крошечные компоненты – кварки. Но даже при самых больших энергиях (которым соответствуют самые малые длины волн) электрон, фотон и кварк остаются, насколько мы можем утверждать, точечными объектами. Это означает, что мы не можем обнаружить никакой внутренней структуры или составляющих частей электронов и кварков, равно как не можем и определить их размеры. Они так и остаются для нас бесконечно малыми точками.
Вернёмся к принципу неопределённости Гейзенберга и его последствиям. Представим себе один шар на бильярдном столе. Так как шар не может покинуть бильярдный стол, мы автоматически кое-что уже знаем о его положении в пространстве: неопределённость его положения не больше, чем размеры стола. Чем меньше стол, тем более точно мы знаем положение шара, но тем выше становится неопределённость импульса. Если бы мы начали измерять скорость шара, запертого в пределах бильярдного стола, то в разные моменты времени получили бы разные значения скорости, и в первую очередь это касается направления скорости. Если же мы попытаемся отобрать у шара всю его кинетическую энергию, то обнаружим, что в квантово-механическом случае остаточные колебания