Мир по Эйнштейну. От теории относительности до теории струн. Тибо Дамур

Читать онлайн.
Название Мир по Эйнштейну. От теории относительности до теории струн
Автор произведения Тибо Дамур
Жанр Физика
Серия
Издательство Физика
Год выпуска 2012
isbn 978-5-9614-2389-1



Скачать книгу

1905 г.»

      Эта короткая статья Эйнштейна содержит один из самых важных научных результатов XX в. Она поражает «изяществом» и обладает аксиоматической безупречностью, достойной классических рассуждений эвклидовой геометрии, которую Эйнштейн так ценил, будучи ребенком. Ее логика развивается без видимых усилий, как лучшие музыкальные произведения Моцарта. Я настоятельно рекомендую каждому молодому (и не очень) заинтересованному читателю прочитать эту статью самому{7}, чтобы пережить один из ярчайших моментов торжества человеческой мысли. Ниже мы наметим ее логику и содержание.

      Пространство и время до Эйнштейна

      Итак, эти господа утверждают, что пространство является абсолютной реальностью, однако это приводит к большим сложностям.

– Лейбниц

      Чтобы понять, насколько глубоко статья Эйнштейна, вышедшая в июне 1905 г., изменила тысячелетние представления о пространстве и времени, вернемся назад. Мы не будем пытаться прослеживать медленный и извилистый путь развития понятий пространства и времени с момента зарождения геометрии у греков, через зашоренное Средневековье с его воззрениями в отношении материального мира и до тех пор, пока примитивные и беспомощные взгляды не трансформировались, наконец, в представления о мире как о бесконечной Вселенной, лишенной каких-либо конкретных качеств{8}. Начнем с понятий «абсолютного» пространства и времени в том состоянии, в каком они выкристаллизовались в «Математических началах натуральной философии» (Philosophiæ Naturalis Principia Mathematica){9}, сочинении Исаака Ньютона, написанном в 1686 г. Давайте прочитаем знаменитый комментарий (или scholie), который добавляет Ньютон после введения концептуальных основ своего трактата:

      «Только что я определил смысл терминов, которые используются в этой книге и которые не являются общепринятыми. Что касается понятий времени, пространства, места и движения, то они знакомы всем; но следует отметить, что суждение об этих величинах исключительно в контексте их отношений с материальными предметами приводит к определенным заблуждениям.

      Чтобы избежать этого, мы должны уточнить понятия времени, пространства, места и движения, поскольку каждое из них может быть абсолютным и относительным, истинным и кажущимся, математическим и обыденным.

      I. Истинное и абсолютное математическое время без всякого отношения к чему-либо внешнему течет равномерно и называется длительностью. Относительное время, интуитивное и общепринятое, является лишь разумной внешней мерой измерения (точной или приблизительной) продолжительности посредством движения. Таковыми являются меры часов, дней, месяцев и т. д., меры, которые обычно используются вместо истинного времени.

      II. Абсолютное пространство безотносительно к внешним вещам всегда остается одинаковым и недвижимым. Относительное пространство – это такая подвижная шкала измерения,



<p>7</p>

См., например, русское издание полного собрания сочинений Эйнштейна: Эйнштейн А. Собрание научных трудов в четырех томах. Под ред. И. Е. Тамма, Я. А. Смородинского, Б. Г. Кузнецова (М.: Наука, 1965–1967. Серия «Классики науки») (Здесь и далее вместо оригинальной ссылки по возможности указывается источник на русском языке. – Прим. пер.).

<p>8</p>

Эволюция концепции пространства описана в книге Макса Джеммера «Концепция Пространства» (Max Jammer, Concepts of Space, Dover, 1993), а также в книгах: Койре А. От замкнутого мира к бесконечной вселенной. (М.: Логос, 2001); Дэвис П. О времени (Paul Davies, About Time, New York, Touchstone, 1996); Клейн Э. Тактика хроноса (Étienne Klein, Les Tactiques de Chronos, Paris, Flammarion, 2004).

<p>9</p>

Ньютон И. Математические начала натуральной философии. – М.: Наука, 1989. Автор следует французскому переводу маркизы де Шатле (с помощью и комментариями Клеро): Principes mathématiques de la philosophie naturelle, Paris, Desaint et Saillant, 1756, rééditée par les éditions Blanchard, Paris, 1966.