Психодинамика. Д. В. Сочивко

Читать онлайн.
Название Психодинамика
Автор произведения Д. В. Сочивко
Жанр Социальная психология
Серия
Издательство Социальная психология
Год выпуска 2003
isbn 5-9292-0118-8



Скачать книгу

же, как холерик и меланхолик, в то время как меланхолик и сангвиник – нет, также как и холерик и флегматик. Действительно, как на основе интуитивных представлений, так и из многочисленной литературы ясно, что сангвиника с меланхоликом, также как и флегматика с холериком спутать очень трудно. В то время как в зависимости от ситуации флегматик может вести себя как меланхолик или как сангвиник, холерик также может впадать в меланхолию или, напротив, быть спокойным как сангвиник. Таким образом, мы видим, что отношение толерантности, заданное на том же самом множестве, позволяет несколько с иной точки зрения взглянуть на проблемы психологических типов. Мы видим, что даже такие простейшие модели как множества с заданным отношением уже в существенной мере определяют направление исследовательского поиска. Легко понять, каким мощным орудием располагает исследователь, если он ясно представляет себе, с какой моделью работает.

      5.2. Отображения и функции

      Мы уже ввели понятие пары объектов. Рассмотрим теперь следующее множество пар. Пусть имеется два множества А и В. Рассмотрим множество таких пар объектов, где первый элемент всегда выбирается из множества А, а второй – из B. Все множество таких пар образует множество А и B. Ограничим теперь указанное соответствие следующим условием. Пусть каждый элемент из А имеет только единственную пару из множества B. Такое ограниченное соответствие называется отображением множества A в множество B, и обозначается f: A B т. е. (а, b) ∈ f или в другой записи f (а) = b.

      Рассмотрим некоторые важные свойства отображений. Будем называть элемент b = f(а) образом элемента а, а сам элемент а – прообразом элемента b. Соответственно все множество А всегда является прообразом при отображении f, а множество В содержит в себе некоторое подмножество, которое является образом множества А. Если образ множества А совпадает со всем множеством В, т. е. каждый элемент из В имеет хотя бы один прообраз, то отображение называется сюръективным или обладает свойством сюръективности. В множестве В могут, однако, быть элементы, которые не являются образами никаких элементов из А, если а при этом еще каждый из тех элементов, которые являются образами элементов из А, имеет единственный прообраз, то такое отображение называется инъективным или обладает свойством инъективности. Если отображение одновременно обладает двумя указанными свойствами, т. е. является сюръективным и инъективном, то такое отображение называют биективным или взаимно однозначным.

      В качестве примера сюръективного отображения модно привести соответствие множества психических образов (восприятии и представлений) и множества мыслей, выраженных в законченной фазе.

      В начале нынешнего века остро обсуждался вопрос, является ли отображение множества мыслей в множество образов сюръективным или нет (само обсуждение велось, конечно, в других терминах).