Рак излечим. Михаил Владимирович Кутушов

Читать онлайн.
Название Рак излечим
Автор произведения Михаил Владимирович Кутушов
Жанр Медицина
Серия
Издательство Медицина
Год выпуска 0
isbn 5-88923-096-4



Скачать книгу

симметричен, то независимыми являются лишь 6 из них: три диагональных и три недиагональных элемента матрицы. При повороте системы координат матрица тензора преобразуется по определенному закону. Всякий симметричный тензор второго ранга может быть приведен к главным осям, то есть существует такая система координат, в которой матрица этого тензора диагональна; соответствующие 3 диагональных элемента называются главными значениями тензора. Если главные значения не совпадают, имеет место анизотропия, а направления главных осей определены однозначно. Так, для всех кристаллов, кроме кубических, направление электрического тока обычно не совпадает с направлением приложенного электрического тока. Если, однако, поле приложено вдоль одной из главных осей кристалла, возникающий ток будет параллельным полю и, измеряя значения проводимости вдоль трех главных осей, можно определить главные значения тензора электропроводности кристалла. Аналогично могут быть определены главные значения тензоров теплопроводности, диэлектрической и магнитной проницаемостей. Если для тензора два главных значения совпадают, говорят, что в отношении данной тензорной характеристики вещество является одноосным; вещество с несовпадающими тремя главными значениями называется двухосным. Если все три главных значения симметричного тензора второго ранга одинаковы, матрица тензора диагональная во всякой системе координат и не изменяется при вращениях системы координат. В этом важном частном случае для задания тензорной характеристики достаточно указать всего одну величину. Это означает, что в отношении данной характеристики вещество изотропно.

      Вещество может обладать и более сложными тензорными характеристиками. Так, коэффициент пьезоэлектрического эффекта образует тензор третьего ранга, а характеристики упругих свойств вещества образуют тензор упругих модулей четвертого ранга, для задания которого в произвольной системе координат необходимо указать значения 34–81 его элементов. Учет симметрии позволяет значительно понизить число независимо задаваемых компонент. Анизотропия кристаллов связана с симметрией их кристаллической структуры.

      Чтобы вещество обладало векторной характеристикой (например, спонтанной поляризацией в случае сегнетоэлектриков), его кристаллическая решетка не должна быть симметричной относительно преобразования инверсии, то есть не должна обладать центром симметрии. Этот центр можно условно идентефицировать с местом диссимметрии в живых организмах. Если принять за аксиому, что в тканях существуют кристаллоидные структуры из разных сингоний, то возникновение рака объясняется очень легко. Как мы знаем, все кубические кристаллы изотропны в отношении характеристик, описываемых симметричными тензорами второго ранга (например, электропроводности или диэлектрической проницаемости), поэтому в раковых клетках увеличиваются токи деполяризации. Выше сказанное относится