От микроорганизмов до мегаполисов. Поиск компромисса между прогрессом и будущим планеты. Вацлав Смил

Читать онлайн.



Скачать книгу

большого числа сталагмитов показывает, что эти конусообразные колонны солей кальция, образующиеся на полу пещер благодаря капающей воде, часто растут тысячелетиями почти линейно (White and Culver, 2012). Даже сравнительно быстрый рост со скоростью 0,1 мм в год означает, что сталагмит высотой 1 м вырастет за тысячу лет всего на 10 см (1000 мм + 1000 × 0,1). Если нанести этот результат на график, мы увидим плавно восходящую линию (рис. 1.3). Это, конечно, означает, что темп роста как доля общей высоты сталагмита будет постоянно снижаться. Для сталагмита, растущего со скоростью 0,1 мм в год в течение 1000 лет, он будет составлять 0,01 % в течение первого года, но всего 0,009 % спустя тысячелетие.

      Рис. 1.3. Тысячелетие прироста сталагмитов, иллюстрирующее траектории линейного и экспоненциального роста

      Для сравнения во всех случаях экспоненциального роста значение увеличивается в одинаковое число раз за каждый одинаковый период времени. Основной функциональной зависимостью является

      Nt = N0 (1 + r)t,

      где r – скорость роста, выраженная как доля единицы роста на единицу времени, например, при росте 7 % на единицу времени r = 0,07.

      Экспоненциальный рост также можно выразить – после простой поправки на выбор единиц измерения времени – как

      Nt = N0ert,

      где e (e = 2,7183, основа натурального логарифма) возводится в степень rt, что легко проделать с помощью любого научного калькулятора. Мы можем представить себе пещеру, где количество капающей воды, содержащей одинаковую долю растворенных солей, постоянно возрастает, ведя к экспоненциальному росту сталагмита.

      Если предположить очень малый прирост длины в размере 0,05 % в год, то сталагмит за 1000 лет увеличился бы в длину почти на 65 см (1,000 мм × 2,7180,0005 × 1000 = 1648,6 мм общей длины, или прирост в размере 64,86 см), что почти на 50 % больше, чем при линейном росте. Экспоненциальный рост отображается в виде восходящей кривой, крутизна подъема которой определяется скоростью роста (рис. 1.3). Через 10 000 лет линейно растущий сталагмит удвоил бы свою высоту, и она достигла бы 2 м, в то время как экспоненциально растущему сталагмиту понадобилась бы гигантская пещера, так как его высота составила бы 148,3 м. Экспонента – произведение скорости роста и времени, поэтому прирост может быть одинаково большим как в случае низкого прироста на более длинных интервалах времени, так и в случае более коротких интервалов более быстрого роста.

      Еще одно простое сравнение показывает, что траектории линейного и экспоненциального роста находятся близко друг к другу на самых ранних стадиях роста, когда значения скорости роста и временного интервала невелики по сравнению с единицей: вскоре они начинают расходиться и в конце концов оказываются далеко друг от друга. Голд (Gold, 1992) считал, что колонии бактерий, живущих глубоко под землей, заполняют до 1 % всего пористого пространства в верхних 5 км земной коры, в то время как, по мнению Уитмана и др. (Whitman et al., 1998), объем, занимаемый микроорганизмами, составляет всего 0,016 % пористого пространства. Это все равно означает огромную совокупную