Математическое и гуманитарное. Преодоление барьера. В. А. Успенский

Читать онлайн.
Название Математическое и гуманитарное. Преодоление барьера
Автор произведения В. А. Успенский
Жанр Математика
Серия
Издательство Математика
Год выпуска 2011
isbn 978-5-94057-930-4



Скачать книгу

внизу, они крикнули ему: «Где мы?». Человек внизу оказался математиком, и его ответом было: «Вы на воздушном шаре». (Более длинный вариант анекдота таков. Спрошенный, прежде чем ответить, подумал, и тогда один из унесённых ветром воздухоплавателей сказал: «Ясно, что этот человек – математик. Во-первых, он подумал, прежде чем дать ответ. Во-вторых, его ответ был совершенно точен и совершенно бессмыслен».)

      Пассажиры поезда наблюдают в окно нескончаемые стада белых овец. И вдруг замечают чёрную овцу, повернувшуюся к мчащемуся поезду боком. «О, здесь бывают и чёрные овцы!» – восклицает один из пассажиров. «По меньшей мере одна овца с по меньшей мере одним чёрным боком», – поправляет его другой, математик.

      «Сказка ложь, да в ней намёк! Добрым молодцам урок». Эти анекдоты весьма поучительны: в них в наглядной и сжатой форме выражена идея о том, что чрезмерная точность может быть вредной, может мешать адекватному восприятию текста. Здесь – основа для уважительного диалога между гуманитарием и математиком, диалога, полезного для обеих сторон. В этом диалоге математик обучает гуманитария… – нет, не так, не обучает, а делится с собеседником своими представлениями о важности точности, причём не только точности слов, о которой говорил ещё Декарт, процитированный нами в эпиграфе, но и точности синтаксических конструкций. Математик в этом диалоге пытается передать гуманитарию свою способность увидеть логический каркас текста. Гуманитарий же делится с математиком своими соображениями о важности неточности, он объясняет математику, что и «плоть» текста, натянутая на его логический каркас, и контекст, в котором возникает текст, не менее существенны, чем упомянутый каркас. Окружающий мир, говорит гуманитарий, аморфен и расплывчат, и потому неточные, расплывчатые тексты и образы более приспособлены для адекватного его отражения, нежели тексты и образы математически точные.

      V

      Ряд положений языкознания может быть изложен с математической точностью. (А, скажем, для литературоведения подобный тезис справедлив разве что в применении к стиховедению.) В то же время именно на уроках математики учащиеся могли бы приучаться правильно выражать свои мысли на своём родном языке. Уроки языка и уроки литературы на родном языке проводятся, как правило, одним и тем же учителем. На наш взгляд, было бы полезнее несколько отделить лингвистику от литературоведения. И уже совсем крамольная идея – объединить, хотя бы в порядке эксперимента, язык и математику, с тем, чтобы один и тот же учитель преподавал и математику, и родной язык. Некоторые уважаемые коллеги автора этих строк нашли эту фантастическую идею ужасающей. Поэтому спешу объясниться.

      Прежде всего, идея эта не столько крамольная, сколько утопическая и относится к некоторому идеальному будущему. Будущее, как известно, подразделяется на обозримое и необозримое. В обозримом будущем объединение уроков языка и уроков математики нереально хотя бы потому, что преподавателей, способных осуществить такое объединение,