Миллион просмотров. Как увеличить охваты коротких видео. Ирина Гольмгрейн

Читать онлайн.
Название Миллион просмотров. Как увеличить охваты коротких видео
Автор произведения Ирина Гольмгрейн
Жанр
Серия Нонфикшн Рунета
Издательство
Год выпуска 2022
isbn 978-5-17-151719-9



Скачать книгу

пользоваться этой слабостью и знать: чем больше показов, тем легче раскручиваться дальше. Пробив некий порог просматриваемости, можно безгранично далеко продвинуться. Потолка нет. Для начала давайте хотя бы поверхностно разберемся, что же такое «машинное обучение». В одном из курсов Google.Developers объясняют: в алгоритмах обучения нейросетей используются переменные. Это Label – вещь, которую мы предсказываем, Feature – изучаемые машиной свойства (их могут быть десятки), Example – конкретный набор данных, Model – демонстрирует взаимосвязь между Label и Feature.

      Простыми словами, машинное обучение – это когда компьютер, изучая большое количество ситуаций, видит между ними взаимосвязь и повторяющиеся модели поведения. На основе выявленных из опыта закономерностей машина предсказывает поведение объекта в будущем.

      Для «эффекта чтения мыслей» нейросети даже не должны понимать суть видео.

      Вот как они к этому пришли.

      Контекстная реклама – это первое поколение рекомендательных систем. Они анализируют суть и содержание текста с помощью алгоритмов, заданных человеком. В онлайн-курсе Яндекса по контекстной рекламе сообщается: поисковая система анализирует семантику интернет-страниц, а рекламодатель задает ключевые слова для показа объявлений. Исходя из контекста веб-страницы, рекламная сеть подбирает подходящую по тематике рекламу или советует к прочтению статью. Алгоритм не учитывает никакие параметры, кроме контекста.

      Контекстный подход для программирования рекомендаций по видеоконтенту оказался неприменимым. Для понимания сути и содержания роликов недостаточно расшифровать звук и затем проанализировать текст. На смысл влияют также эмоции, интонации и визуальные образы. Программисты пошли дальше, пытаясь сканировать надписи и распознавать лица и объекты. Но и это не помогало определять контекст, не говоря уже о точном попадании в несформулированные желания пользователя. Поэтому пришлось решать задачу: «Как понять предпочтения зрителя, не вникая в суть ролика?» Решение этой задачи нашлось благодаря нейросетям и большому количеству накопленных паттернов поведения пользователей.

      Нейросеть наблюдает за вашим поведением. Помечает выполнение вами индикативных действий. Индикативные действия у социальных сетей слегка отличаются, но общая суть совпадает: комментарий, репост, досматривание до конца (или резкий свайп с первых мгновений) подписка, переход по тегам или дополнительным элементам (звук, маска). Единственный пользователь в вакууме никогда не начал бы получать качественные рекомендации. Система «look like» не анализирует того или иного человека в отдельности. Она кластеризует по сегментам, отмечает, кто похожим на вас образом взаимодействовал с контентом.

      В огромной аудитории быстро находятся люди, которые свайпали или досматривали те же видосы, что и вы. В результате, когда похожим на вас людям понравится клип, система покажет его и вам.

      Вы можете одновременно находиться в узких и широких группах по интересам и паттернам поведения. Таким образом, нейросеть совсем не должна анализировать содержание и контекст