Невозможность второго рода. Невероятные поиски новой формы вещества. Пол Стейнхардт

Читать онлайн.
Название Невозможность второго рода. Невероятные поиски новой формы вещества
Автор произведения Пол Стейнхардт
Жанр Физика
Серия Элементы 2.0
Издательство Физика
Год выпуска 2019
isbn 978-5-17-122038-9



Скачать книгу

ребер куба, предсказанного Нельсоном и Тонером.

      Однако совершенно случайно мы открыли нечто даже более интересное. Разрабатывая количественный математический тест для проверки ориентации атомных связей в соответствии с кубической симметрией, мы поняли, что будет несложно адаптировать этот тест к поиску любых других возможных вращательных симметрий. Поэтому вдобавок мы использовали тест для количественной оценки каждой симметрии по степени выравнивания атомных связей вдоль различных направлений.

      К нашему огромному удивлению, именно запрещенная симметрия получила гораздо более высокую оценку, чем все остальные, – та самая невозможная симметрия икосаэдра, фигуры, изображенной ниже слева.

      Я знал, что некоторые слушатели в аудитории уже должны быть знакомы с икосаэдром, поскольку эта трехмерная фигура использовалась в качестве игральной кости (см. фото внизу справа) в популярной игре Dungeons & Dragons (“Подземелья и драконы”). Другие могли знать про него из курса биологии, поскольку такой формой обладают некоторые вирусы человека. А слушатели, имевшие склонность к геометрии, должны были распознать в нем одно из пяти платоновых тел – трехмерных фигур с одинаковыми гранями, ребрами одинаковой длины и одинаковыми углами.

      Важная особенность икосаэдра состоит в том, что, осматривая его со стороны любой из вершин, мы наблюдаем пятиугольную форму с симметрией пятого порядка. Ту самую симметрию пятого порядка, запрещенную для двумерных замощений и трехмерных кристаллов.

      Разумеется, нет ничего невозможного в использовании одной плитки в форме правильного пятиугольника. Одиночную плитку можно взять любой формы. Однако невозможно покрыть пол одними лишь правильными пятиугольниками, не оставляя зазоров. То же относится и к икосаэдру. Можно сделать отдельную трехмерную игральную кость в форме икосаэдра. Но вот заполнить пространство икосаэдрами так, чтобы между ними не осталось пустот и отверстий, уже не получится, как показано на фото выше.

      При таком числе вершин, каждая из которых обладает запрещенной симметрией пятого порядка, икосаэдр был прекрасно известен исследователям, изучавшим строение вещества, в качестве самой запретной симметрии в расположении атомов. Этот факт считался настолько фундаментальным, что часто излагался в первой главе учебников. И все же икосаэдрическая симметрия каким-то образом получила самую высокую оценку по выравниванию атомных связей в нашем компьютерном эксперименте.

      Строго говоря, наши результаты прямо не противоречили законам кристаллографии. Эти правила применимы только к макроскопическим фрагментам вещества, содержащим десятки тысяч атомов и более. Для намного меньших групп атомов, как те, что изучались в нашей модели, такого категорического запрета не существовало.

      В предельном случае маленького кластера, содержащего, например, лишь тринадцать одинаковых атомов золота, межатомные