Социальная психология знания. А. Л. Журавлев

Читать онлайн.
Название Социальная психология знания
Автор произведения А. Л. Журавлев
Жанр Общая психология
Серия Психология социальных явлений
Издательство Общая психология
Год выпуска 2016
isbn 978-5-9270-0335-8



Скачать книгу

значений параметра Ii;

      – межгрупповой дисперсии (Error), характеризующей рассеяние значений Di вне влияния фактора Ii;

      – общей выборочной дисперсии (Total).

      В столбце df приведено число степеней свободы по каждому виду дисперсии. В столбце MS – среднее значение суммы квадратов разностей по каждому виду дисперсии, определяемое как отношение SS/df. В столбце F – значение статистики Фишера для MS. Значение уровня значимости p(Prob > F) для рассчитанного значения статистики F приведено в последнем столбце.

      6

      В промежутки значений [0, q1] и [q3, 1] попадает по 25 % от общего числа точек Di из выборки.

      7

      Столбцы в таблице 2 аналогичны столбцам в таблице 1.

      8

      Аналогично тому, как под метастратегиями понимаются стратегии более высокого уровня – стратегии управления стратегиями.

/9j/4AAQSkZJRgABAgAAZABkAAD/7AARRHVja3kAAQAEAAAAHgAA/+4ADkFkb2JlAGTAAAAAAf/bAIQAEAsLCwwLEAwMEBcPDQ8XGxQQEBQbHxcXFxcXHx4XGhoaGhceHiMlJyUjHi8vMzMvL0BAQEBAQEBAQEBAQEBAQAERDw8RExEVEhIVFBEUERQaFBYWFBomGhocGhomMCMeHh4eIzArLicnJy4rNTUwMDU1QEA/QEBAQEBAQEBAQEBA/8AAEQgAIQGcAwEiAAIRAQMRAf/EAHUAAQADAQEBAQAAAAAAAAAAAAADBAUBAgYHAQEAAAAAAAAAAAAAAAAAAAAAEAACAQMDAgUBBgQFBQAAAAABAgMAEQQhEgUxE0FhcSIUUYEyQiMVBpFigjOhUpIkNNHhcmQWEQEAAAAAAAAAAAAAAAAAAAAA/9oADAMBAAIRAxEAPwD9ApSuEgC50A6mg7So4p4poxLE2+M3sw6G30+tIZop4xLCwdG6MPLqKCSlKUCsubmdmeuIkalTMIC7PtO7Z3XYC3RVIHmTVbN5TMnz8rAwVk/2iKHaNVu00q71BkkuiIosT4nwq+mIs2EI8xo3zDEq5E6KoO/b99bjTXUUFn5EPcji3e+ZS8YsdVW1zf8AqFS1ShxFM0OQsoaGFCmOqgbdjKgN28fuVLkfP7+P8YRGDcfldzdv2W9vb26Xv9aCxWVJzQXPXEVF2mYwb2baboglkYC3RbhfMmqubymdk5uZhceHHw1VN0ar7p3XeN0kgKoiC1/E1onDjnwzFlGNslo1XInRVvv22Li408qCaXNx4WiWRiO+QsZCsVu33bkCwv4XqxVBYTlPHNDlK2LE90jjVHUhQBYtr0N+lT5vz+2nwBEZO4u/vbtvbv77bPxW6UFilK5QdqtyGS+Jhy5Eadx0HtTwJJsL+Qvr5VXyM/K47Bzs7kVjMeOXeBYS12iA9gfd+In6aVV4+bl5sqGbIcx43bZslZFWNS5sVWFT77J4sx1oLPF8k2U80czKXSRlj2qVLIgX8wgk6Nu08rVZTkMZ0mk3bVxy4kv/ACXudPSmTFDvErSmGV17Mb3A+8d1lB0ubVV/SceIPHvK4kiSKyFj/cmK3a59P4mgtPn46Bt7WMYQyjxQSGylqs1SlwYHWSKR/flFTKehcRgD2jw0FS5pzRjP8ARnK07Ymv2+uu7Zr0oJZZFijaRr7UFzYFjYeQ1qtByuDkYR5CKX/aWJEzKyAgaXG4Amqv7lypMXhMgx/wDImUY8IHjJORELf6r1S5KEYj/t7iU0xhOof6N8eMsgPqwvQfQxvvRXsV3C9mFmHqK9ViZ3KZUvJTcdhJIfjRq0xiVS7SS37ab5PYi2Fyx+ytLA+SMSFMyRJcsIvfZLBSxHUAUFmleEljkBMbBwpKttN7MOoPmK6HUkgEEro1vA+dB6pXlWV1DKQynoQbg0DoXKBgXUAst9QD0uKD1Ssvmp8nERMqHOgxES4aLKH5Uv9QIcH0v6V3hOVm5SB5ZcV8bYQFdr9uUf54iwViPVRQadRzSrDE0rglUF22gsbegqSvKuj32MG2na1jexHgaDkckcsayxMHjcBkYagg9CK91gft+TJGLyuLjBd2JmZEeGJL7Bf3qptrtDNW3j9/sR/J2ifaO6I77N9vdt3a2vQSUrlQJ8/wCbJvEXwdi9ojd3u5f3bvw7bUFioTkxDIGKDumK7yoF9q+Bb6X8KmrE/bTtO/K5Ml+6+fLGb9QkIWONfsFBt0rhIAJJsBqSa4WVV3MQFGpYnSg9UrykiSLvjYOp/EpuNPSud2PZ3N47f+e4t/Gg90rlfNy85n8ZljEaSPmWJt2scFctB/Oibo9PMrQfS0rim6g2IuL2PUV2gUpXkMpJAIJXRgPDx1oPGRPHjxNNLftpq5AJ2jxY28B4167kfb7u9e1t3b7jbttfdfpa1dVkkW6kMreI1Br4n5U3/wAv8O57X6l8Dd/6/e6elvb6UH0vLS8qjxLx8kMe+4CSI0jyP9AFZdqgakms39w5+VHiQcY7o02TJjw5U0Z2WE0lmATUgMqkXvWlm8JHmZLZLZeVEWUIUhl2JtHhYL4+NQ53AfKTMtKBJMYHxbjSFsYXj8Tcbr39aDzyz5UnKcbxmHMII23zzqqXtHBt2g6j2liBamFK0P7n5DBX+zNBFlhfBZCTE5/qsCatxYMc2WnKzJJFliHstFuugCsW0t11P/avPH4LjOy+UnXZNlbEjjOpjhiHtBt4sSWNBWzsjk0ypFhfJEYI2iPGSReng7OCavcXJkyQMckyF9xA7sSwtaw/CpartKCjNw3Gz5bZkkN53AWQhmVZAv3e4isFa3mKhxpXhnn+RC4OVkNFDZQQIokspa2u1rG3rWpXPOgpcJFJBxOJDKhjkSMKyHQgjwq9SlBRk4bjZctsx4bzyBRIQzBZNv3d6BtrW8xVeCZohMMvHkc5c02xFRT+VEtkVrEfeVdPWtauedBncMgCZEnx3xWml7jRuoQX2qo2qpPgoufE1pUpQVJeNw5siXJkQmWeE40h3MLxE3tYGw69etch4nBglx5o0IfEiMEBLsdsZtoQTr06mrlKCOeCHJhfHnQSQyqUkRujKdCKzMjiocTC7HHxNumaOFnLGVkhLjfrMW9oW+la9KDD5STKzJMcYkMnaxZ275sA3sKxAxa2OkhYelTZExnyeMmX/hiaVXJ8XCukRP8AUDbztWra3SvKxRJGIlQCMdEA0/hQYjJlfp0Lyh1z5s1ZURzcoDLqo/lEINb1csCQSNR0PrXaCpm8ZiZ7RNkhmMDCSIB2QK6/deyEaivHJ8f82GLtsEyMWRJ8d21AkTwbxswJBq9Sgz5OIwcudc3Jg25TIEkCuwDAahXCMFcDzFRwTSY02RJNBIBNkCDHVFGkcae1tLe0m/8AGtSuWFBi8GcrGHYz1ZcmeR3A/BZh3mYee59redR8cmZJHx0b7x25Z5M9gbfmqW2rJ6s1/srdKIXWQqC6ghWtqA1r29bV3aASQBc9fOgwAvLdrIPHFBEc66b939vdFv27SPbu338r2q/iwzry2RNKlt+PApkUWRnQybwt9dN1aAAAAAsB0ArtBBLhYk08eRNCkk0QIjd1DFL6nbfp0qelKBWZgR5OOvIlYfe+U8kKt7Q4ZUAa/wBLitOlBT4vAHH4vaLb5ZHeaeTpvlkO52/6eVSZGDjZM+PkTKWkxWLwkMRZmG03ANjp9asUoKA4TjhEsQjOxcj5YG9/71926+7/AA6VfpSgVQxcF8PPyZIQDi5rd6Rb2McwAVmH1DgD7av0oKXLDIbBkjxlLSylY/aAbK7BXYhtLBb1Q5DNi+biCVWTEx5ZI3iIUb5lRTCVW/uUXP22vW5UcuPBMu2aJJF+jqGGvrQYKjK/TOVWEWy8jfkCNCD2xINioCuhbbHc28TV2MLJlzTPdeMjxUSEE/kur7mka3koUVoxwxREmNFQtYHaALhdB0+letibdu0bfpbSgqcMMheKxBk37wiXdfr00v5261Ni4WJhx9vEhSFCbkIoW5+pt1qelAqnyfyzihMTcJXdF3rYlE3Au2v8oNXKUGJxMvJRZCxci0jNLGgjVrW3WeWT7o/ACqHzqPAXMkhwIW3hlyJpM91Nvehcqr+TMQfQVumNC6yFQXUEK1tQG629bV0KASQBc9T9aDLwfkqnIHGUMrZLfFDGyC6oHb/x7m46edP0DH/RP0ncem7vW93e3d3u/wCvX/CtQAKAALAdAK7QKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQf//Z/9j/4AAQSkZJRgABAgAAZABkAAD/7AARRHVja3kAAQAEAAAAHgAA/+4ADkFkb2JlAGTAAAAAAf/bAIQAEAsLCwwLEAwMEBcPDQ8XGxQQEBQbHxcXFxcXHx4XGhoaGhceHiMlJyUjHi8vMzMvL0BAQEBAQEBAQEBAQEBAQAERDw8RExEVEhIVFBEUERQaFBYWFBomGhocGhomMCMeHh4eIzArLicnJy4rNTUwMDU1QEA/QEBAQEBAQEBAQEBA/8AAEQgAIQEgAwEiAAIRAQMRAf/EAHEAAQADAQEBAQAAAAAAAAAAAAADBAUCAQYHAQEAAAAAAAAAAAAAAAAAAAAAEAACAQMCBAUDAgQHAAAAAAABAgMAEQQhEjFBEwVRIjIUBmFxgZFC4VIjFaFyojNTJBYRAQAAAAAAAAAAAAAAAAAAAAD/2gAMAwEAAhEDEQA/AP0ClRyTxRMiuwVpTtRebH6CuVy8Z8h8VJUbIjAZ4gQWVToCw5UE1KjhninUvEwcAlTbkw4gjkakoFKUoFUW7tiLmTYTbhLjxiaViPIqHgd3DW1XeGpr4yHK2Z8nyDJKydqy8tsZgeEYitDjz/Ubg178L3oPrcTKXLgWdEkjRtVEqlGt47TrXsWTFNJKkZ3dE7ZGHpDc1v4jnXRmTcqKbvIpaMcQQtufDnXyiTP/AOKxojIY8jPkEDSBipEkszdUswtwG69B9crKyhlIKkXBGoINe1VZZcXDSPBiExjCqkbyFPKNPWVbgPpWb8Zyu5T4n/aiHS6k9pzKZGLCZxs2lRoOHHlQaC9zx3ycnFjDvNiKrSoFI0e+3be27hyqxDNFPEs0LB43F1YcCKycBh/6fuouL9HF058JK87A0q43clQXWLNylx14i191gNNN5NBt1WzstcLGOQyF1DIpAIB/qOsd9fDdWPj9w+SvPEs2MViZ1Eh6AFlJ11901v0q534ye2Ku0EeKShaSaVoyHRw6gWjcW8tBq1DlZMeJjS5U1+lCpd9ouQqi5Nqgde45GDaOWLGymIKyxjrx7bg6bwl7rVL5S4kwYu2qwEncp48Ya67GbdKbf5FNBc/vGIYoJAHL5S74IAp6rrx3bOQtzNd42bBlzyRdJ0mxdpdZVsV6gO3adQbgcqyu2yQw/Iu6jLZYpgsCYiuQo9qqX/p35b77rc624JIJgZobMGNuoBo23TQ8xQSEBgVYXB0IPAilctKiyJGT53uVXmQvE06sfV6N/wCpt3bfFb2uKDiLJillkjjO4wnbIw9Ibjtv4gca8GXB10g3eaVS8R/bIBx2nnavl0nkHwtFLmPLzZWhaQMVYSzTsrksCOAvWl3qIYuL2mPFveLNxkhuSTtN0YXOvoJoN2qs/cIIZhjANNkld/RiG5gnDc3AKPua76eV7wy9Ye06e0Y+wX6m6+/fx4aWrE7BlQwY/c+4dwkWPJbLl9yXPmRYjsijtxsF9I+tBsYOZjZqPNBcMrGKVWXa6OnFHHiL1JFkxTPKsZ3CE7Xf9oYcVv4jnWX8fxsqPFzM+ZDHkdxnfJWFuKIQFiVvrZdayklY/C8KDqNHNnukDSBipDyyM0xYj6Br0H1IyoTOsF7O674z+2RRxKHna+tTVid5jGMezLj3DR5sUaakt02R1kFzrbZT5Pldxgwm9rEOluhvOJTG6sZUG0KFOh4cedBt1R7d3Jc85G1OmIJDHZj5z9WQgFb1JHJnviszwRxZVyFjMhZLX4l1S/8Apqn2czGSV3eCbcFEsySmSQlR5AR0o1tbnQWn7njJnnt7bhMIuuzEeQR327i/Aa13hZUWbGMmON0DaK0iFGZfEX1tXysuQf7llfIJisvalylwp4+IEUQCLN9QsrG4/PKvsVZXUOhDKwurA3BB8DQRx5MUs0kMZLNDYSMPSrHXbfxtrXnu4OtHDu80oJib9r7fUFPiONfMR5Mkfw+dy5TNyp5omcEqwnlyGjvuFuA/wFX+9wrh9q7dFiEs0GVirjkkknzhefipNBLgSNk/Je5tIbjBjgggX+USqZZD+Tb9K4x1UfMMywAvgwk25nqPVz2UmP3d+4QDdHmIkWUgNiGjv05RfjoSp/FSp22BO5SdyDOciWMRMCRs2KbgAW8aCgspx/lrYyf7WZhiaReXVifphvypt+K26zsXCkfuc3dcgbHaNcfHj5rErFyWtzdj+lq0aBSlKDwgMCrAEHQg8Ki9pidPpdCPp3vs2Ltv42tapqUFRMQpn+4G1YVhEMca6WO4s2nDwr2HAghaQKAYXfrLEwBCSnVmS/C51+9WqUCuVRUG1AFGpsBYXOprqlBC2PHd5IlWOdxYyhQW/jTExYcPHTHhFo0vx1JJO5mJ8STc1NSgVU7lHkyYxjxo1kd7q29tlkYEMVba+ttOFW6UEWNGIseKIIIwiKoRTcLYW2g6XtXrwQSMryRo7L6WZQSPsTUlKCGbFxcjb7iGObb6eooa323CpGIjjJC6INFUeA4AV1SgzoYcls7HzpRbfjGKRP8Ajcssn8Kllx5Je54848sePHKGP8zS7AF/G29XKUFWLAgieXaAYpX63SYAhZT6nW/C/H7611LiJNkxZEp3CC5hj5K7DaXPibaDwqxSgViydjzTnvnR5y9RyCRJjRSbQvpVG8rC33rapQcRI0cYVnMjD1O1rk/jSoIMCCAuFAMLP1kiYAiOQm7Mnhcm9WqUFd8RJMuPKkO4wAiFeSFxZm+pI0+1TMiuNrgMvgRcaa11Sg8N7acayexdryO3xzJPsKybLKPNYhbMAbDyfyryrXpQQ+0xOmYuhH0yblNi7SfG1qkREjUIihUXQKosB+BXVKCrH2+COWZgAYp36rxMAVEvN1vwvbX6611NiJPkQzSncsB3xR8hJYrvPiQDpVilApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlB//Z/9j/4AAQSkZJRgABAgAAZABkAAD/7AARRHVja3kAAQAEAAAAHgAA/+4ADkFkb2JlAGTAAAAAAf/bAIQAEAsLCwwLEAwMEBcPDQ8XGxQQEBQbHxcXFxcXHx4XGhoaGhceHiMlJyUjHi8vMzMvL0BAQEBAQEBAQEBAQEBAQAERDw8RExEVEhIVFBEUERQaFBYWFBomGhocGho