Основным содержанием книги является статья академика Владимира Игоревича Арнольда, написанная в 2002 году: «…Вопрос о том, является ли математика „перечислением следствий из произвольных аксиом“ или же ветвью естествознания и теоретической физики, много обсуждался уже со времен Гильберта (придерживавшегося, вслед за Декартом и предвосхищая Бурбаки, первого мнения) и Пуанкаре (основателя современной математики, топологии и теории хаоса и динамических систем). Я буду говорить в основном о содержательных примерах, показывающих кардинальные различия точек зрения аксиомофилов и естествоиспытателей уже на столь фундаментальные понятия, как производные и пределы, теоремы существования и единственности, оптимизация и теория управления, как неразрешимость одних проблем и измерение сложности других…» Книга содержит также «Доклад о девяти недавних математических открытиях» и Задачи парижского семинара 2002 года.
В 70-х годах XIX века немецкий математик Г. Кантор создал новую область математики – теорию бесконечных множеств. Через несколько десятилетий почти вся математика была перестроена на теоретико-множественной основе. Понятия теории множеств отражают наиболее общие свойства математических объектов. Обычно теорию множеств излагают в учебниках для университетов. В настоящей книге в популярной форме описываются основные понятия и результаты теории множеств. Книга предназначена для широкого круга читателей, интересующихся математикой и желающих узнать, что такое теория множеств.
В книге приводятся многочисленные примеры математического моделирования реальной действительности, доступные для понимания и осознания на школьном уровне изучения математики. Книга предназначена для старшеклассников, выбирающих направление своего профессионального образования и склонных разобраться в том, какова действительная роль математики в науке и практике. Эта книга будет полезна также студентам, изучающим дифференциальные уравнения и математические модели.
Книга написана крупным математиком Рихардом Курантом в соавторстве с Гербертом Роббинсом. Она призвана сократить разрыв между математикой, которая преподается в школе, и наиболее живыми и важными для естествознания и техники разделами современной математической науки. Начиная с элементарных понятий, читатель движется к важным областям современной науки. Книга написана доступным языком и является классикой популярного жанра в математике. Книга предназначена для школьников, студентов, преподавателей, а также для всех интересующихся развитием математики и ее структурой.
Книжка состоит примерно из двухсот задач, многие из них даны с решениями или комментариями. Эти задачи очень разнообразны – от традиционных задач, в которых нужно найти и как-то использовать то или иное множество точек, до небольших исследований, подводящих к важным математическим понятиям и теориям. Помимо обычных геометрических теорем о прямых, окружностях и треугольниках, в книге используются метод координат, векторы и геометрические преобразования, и особенно часто – язык движений. Некоторые логические тонкости, зачастую возникающие в решениях, оставлены читателю для размышления. Для школьников, учителей математики, руководителей кружков.
Брошюра написана по материалам лекции, прочитанной автором 23 июля 2005 года в летней школе «Современная математика» в Дубне. Она посвящена формализации такого интуитивно ясного термина, как «случайность». В брошюре рассматривается четыре разных подхода к этому понятию, основанных на характерных свойствах случайных последовательностей: частотоустойчивость, хаотичность, типичность и непредсказуемость. Вводятся важнейшие в теории алгоритмов понятия перечислимости, вычислимости, энтропии и колмогоровской сложности. С их помощью и можно попытаться ответить на вопрос, с которым не справляется классическая теория вероятностей: определить, можно ли, например, индивидуальную последовательность нулей и единиц считать случайной или нет. В последней главе проводится обобщение понятий частотоустойчивости, хаотичности, типичности и непредсказуемости на случай вычислимого распределения. Брошюра адресована старшим школьникам и студентам младших курсов. Предварительных знаний от читателя не потребуется, однако будет полезным знакомство с теорией алгоритмов, а для чтения последней главы – с основными понятиями теории вероятностей. Первое издание книги вышло в 2006 г.
Книга содержит задачи по программированию различной трудности. Большинство задач приводятся с решениями. Цель книги – научить основным методам построения корректных и быстрых алгоритмов. Для учителей информатики, старшеклассников, студентов младших курсов высших учебных заведений. Пособие может быть использовано на кружковых и факультативных занятиях в общеобразовательных учреждениях, в школах с углублённым изучением математики и информатики, а также в иных целях, не противоречащих законодательству РФ.
В книге описан ряд классических идей решения олимпиадных задач, которые для большинства школьников являются нестандартными. Каждая идея снабжена комментарием, примерами решения задач и задачами для самостоятельного решения. Приведены подборки задач олимпиадного и исследовательского типов (всего 200 задач), которые сгруппированы по классам. Сборник адресован старшеклассникам, учителям, руководителям кружков и всем любителям математики.
Восьмая книжка серии «Школьные математические кружки» посвящена основным понятиям и фактам, которые связаны с делимостью целых чисел: признакам делимости, простым и составным числам, алгоритму Евклида, основной теореме арифметике и т. п. Она предназначена для занятий со школьниками 7–9 классов. В книжку вошли разработки восьми занятий математического кружка с подробно изложенным теоретическим материалом, примерами задач различного уровня трудности, задачами для самостоятельного решения и методическими указаниями для учителя. Ко всем задачам каждого занятия приведены подробные решения. Кроме того, в приложениях сформулированы две ещё не решённые проблемы из этого раздела математики, а также приведены примеры исследовательских задач. Книжка адресована школьным учителям математики и руководителям математических кружков. Надеемся, что она будет интересна школьникам и их родителям, студентам педагогических вузов, а также всем любителям элементарной математики.
На примерах излагаются первые понятия теории вероятностей (вероятность события, правила подсчёта вероятностей, условная вероятность, независимость событий, случайная величина, математическое ожидание, дисперсия). Брошюра рассчитана на школьников и учителей, свободно оперирующих с дробями и процентами.