Ingram

Все книги издательства Ingram


    Metaphor

    Tony Veale

    The literary imagination may take flight on the wings of metaphor, but hard-headed scientists are just as likely as doe-eyed poets to reach for a metaphor when the descriptive need arises. Metaphor is a pervasive aspect of every genre of text and every register of speech, and is as useful for describing the inner workings of a «black hole» (itself a metaphor) as it is the affairs of the human heart. The ubiquity of metaphor in natural language thus poses a significant challenge for Natural Language Processing (NLP) systems and their builders, who cannot afford to wait until the problems of literal language have been solved before turning their attention to figurative phenomena. This book offers a comprehensive approach to the computational treatment of metaphor and its figurative brethren—including simile, analogy, and conceptual blending—that does not shy away from their important cognitive and philosophical dimensions. Veale, Shutova, and Beigman Klebanov approach metaphor from multiple computational perspectives, providing coverage of both symbolic and statistical approaches to interpretation and paraphrase generation, while also considering key contributions from philosophy on what constitutes the «meaning» of a metaphor. This book also surveys available metaphor corpora and discusses protocols for metaphor annotation. Any reader with an interest in metaphor, from beginning researchers to seasoned scholars, will find this book to be an invaluable guide to what is a fascinating linguistic phenomenon.

    Database Anonymization

    David Sánchez

    The current social and economic context increasingly demands open data to improve scientific research and decision making. However, when published data refer to individual respondents, disclosure risk limitation techniques must be implemented to anonymize the data and guarantee by design the fundamental right to privacy of the subjects the data refer to. Disclosure risk limitation has a long record in the statistical and computer science research communities, who have developed a variety of privacy-preserving solutions for data releases. This Synthesis Lecture provides a comprehensive overview of the fundamentals of privacy in data releases focusing on the computer science perspective. Specifically, we detail the privacy models, anonymization methods, and utility and risk metrics that have been proposed so far in the literature. Besides, as a more advanced topic, we identify and discuss in detail connections between several privacy models (i.e., how to accumulate the privacy guarantees they offer to achieve more robust protection and when such guarantees are equivalent or complementary); we also explore the links between anonymization methods and privacy models (how anonymization methods can be used to enforce privacy models and thereby offer ex ante privacy guarantees). These latter topics are relevant to researchers and advanced practitioners, who will gain a deeper understanding on the available data anonymization solutions and the privacy guarantees they can offer.