This practical book in instrumental analytics conveys an overview of important methods of analysis and enables the reader to realistically learn the (principally technology-independent) working techniques the analytical chemist uses to develop methods and conduct validation. What is to be conveyed to the student is the fact that analysts in their capacity as problem-solvers perform services for certain groups of customers, i.e., the solution to the problem should in any case be processed in such a way as to be «fit for purpose». <br> The book presents sixteen experiments in analytical chemistry laboratory courses. They consist of the classical curriculum used at universities and universities of applied sciences with chromatographic procedures, atom spectrometric methods, sensors and special methods (e.g. field flow fractionation, flow injection analysis and N-determination according to Kjeldahl).<br> The carefully chosen combination of theoretical description of the methods of analysis and the detailed instructions given are what characterizes this book. The instructions to the experiments are so detailed that the measurements can, for the most part, be taken without the help of additional literature.<br> The book is complemented with tips for effective literature and database research on the topics of organization and the practical workflow of experiments in analytical laboratory, on the topic of the use of laboratory logs as well as on writing technical reports and grading them (Evaluation Guidelines for Laboratory Experiments).<br> A small introduction to Quality Management, a brief glance at the history of analytical chemistry as well as a detailed appendix on the topic of safety in analytical laboratories and a short introduction to the new system of grading and marking chemicals using the «Globally Harmonized System of Classification and Labelling of Chemicals (GHS)», round off this book.<br> This book is therefore an indispensable workbook for students, internship assistants and lecturers (in the area of chemistry, biotechnology, food technology and environmental technology) in the basic training program of analytics at universities and universities of applied sciences.<br>
A thorough guide to the fundamental development of linear piezoelectricity for vibrations Vibrations of Linear Piezostructures is an introductory text that offers a concise examination of the general theory of vibrations of linear piezostructures. This important book brings together in one comprehensive volume the most current information on the theory for modeling and analysis of piezostructures. The authors explore the fundamental principles of piezostructures, review the relevant mathematics, continuum mechanics and elasticity, and continuum electrodynamics as they are applied to electromechanical piezostructures, and include the work that pertains to linear constitutive laws of piezoelectricity. The book addresses modeling of linear piezostructures via Newton’s approach and Variational Methods. In addition, the authors explore the weak and strong forms of the equations of motion, Galerkin approximation methods for the weak form, Fourier or modal methods, and finite element methods. This important book: Covers the fundamental developments to vibrational theory for linear piezostructures Provides an introduction to continuum mechanics, elasticity, electrodynamics, variational calculus, and applied mathematics Offers in-depth coverage of Newton’s formulation of the equations of motion of vibrations of piezo-structures Discusses the variational methods for generation of equations of motion of piezo-structures Written for students, professionals, and researchers in the field, Vibrations of Linear Piezostructures is an up-to-date volume to the fundamental development of linear piezoelectricity for vibrations from initial development to fully modeled systems using various methods.
PROCESSING OF CERAMICS A firsthand account of the “transparent ceramics revolution” from one of the pioneers in the field Processing of Ceramics: Breakthroughs in Optical Materials is an in-depth survey of the breakthrough research and development of transparent ceramics, covering historical background, theory, manufacturing processes, and applications. Written by an internationally-recognized leader in the technology, this authoritative volume describes advances in optical grade ceramics over the past three decades—from the author’s first demonstration of laser ceramics in Japan in 1991 to new applications of transparent ceramics such as ceramic jewels, wireless heating elements, and mobile device displays.The author provides numerous development examples of laser ceramics, crystal and ceramic scintillators, magneto-optic transparent ceramics, optical ceramic phosphors for solid state lighting, and more. Detailed chapters cover topics such as the technical problems of conventional translucent and transparent ceramics, the characteristics of scintillation materials, single crystal and ceramic scintillator fabrication and optimization, and solid-state crystal growth (SSCG) methods for single crystal ceramics. Processing of Ceramics: Outlines the author’s 30 years of work in the area of transparent ceramicsProvides a detailed history of the world's first ceramic laser developmentDemonstrates how laser oscillation using ceramic materials match or surpass high-quality single crystalsDescribes how innovative polycrystalline ceramics have transformed optical material developmentIncludes extensive references, chapter introductions and summaries, and numerous graphs, tables, diagrams, and color images Processing of Ceramics is an invaluable resource for researchers, materials scientists, engineers, and other professionals across academic and industrial fields involved in the development and application of optical grade ceramics.
This clinically oriented book gives dental practitioners and students a hands-on guide to incorporating dental implants into their practices. Taking a clear and concise approach to the subject, the book offers basic information on all aspects of dental implants. Topics covered encompass the pros and cons of implants, patient factors, clinical considerations to success and failure, and implant restoration. Photographs, radiographs, and illustrations support the text, demonstrating the concepts discussed. The ADA Practical Guide to Dental Implants starts with a brief history of the subject then examines the clinical and economic considerations for implants. Patient factors, including systemic, oral, and periodontal health, diet, age, gender, and more are discussed. The book also looks at the experience of the clinician, followed by clinical considerations such as case planning, implant design, surgical techniques, antibiotics, and more. The last chapters cover post-surgical follow-up and the many factors that lead to a successful outcome. Discusses all aspects of dental implantology in the practice setting Supports dental practitioners in incorporating dental implants into their practices Considers pros and cons, patient factors, clinical considerations, success and failure, and implant restoration Offers foundational information on dental implants in an easy-to-read format Includes photographs and drawings to depict the concepts discussed The ADA Practical Guide to Dental Implants is a useful introduction and guide to dental implants for any practitioner interested in incorporating implants into clinical practice.