Техническая литература

Различные книги в жанре Техническая литература

Unified Optical Scanning Technology

Leo Beiser

Written by an award-winning leader in the field, this is a thoroughly integrated overview of the many facets and disciplines of optical scanning. Of particular utility to both practitioner and student are such features as: An overview of the technology and unifying principles, including active and passive scanning, optical transfer, and system architecture In-depth chapters on scanning theory and processes, scanned resolution, scanner devices and techniques, and the control of scanner beam misplacemen A comprehensive review of the government-sponsored research of agile beam steering, now primed for commercial adaptation A unique focus on the Lagrange invariant and its revealing resolution invariant

Introduction to Microsystem Technology

Dörte Müller

Over half a century after the discovery of the piezoresistive effect, microsystem technology has experienced considerable developments. Expanding the opportunities of microelectronics to non-electronic systems, its number of application fields continues to increase. Microsensors are one of the most important fields, used in medical applications and micromechanics. Microfluidic systems are also a significant area, most commonly used in ink-jet printer heads. This textbook focuses on the essentials of microsystems technology, providing a knowledgeable grounding and a clear path through this well-established scientific dicipline. With a methodical, student-orientated approach, Introduction to Microsystem Technology covers the following: microsystem materials (including silicon, polymers and thin films), and the scaling effects of going micro; fabrication techniques based on different material properties, descriptions of their limitations and functional and shape elements produced by these techniques; sensors and actuators based on elements such as mechanical, fluidic, and thermal (yaw rate sensor components are described); the influence of technology parameters on microsystem properties, asking, for example, when is the function of a microsystem device robust and safe? The book presents problems at the end of each chapter so that you may test your understanding of the key concepts (full solutions for these are given on an accompanying website). Practical examples are included also, as well as case studies that enable a better understanding of the technology as a whole. With its extensive treatment on the fundamentals of microsystem technology, this book also serves as a compendium for engineers and technicians working with microsystem technology.

Nanocomputers and Swarm Intelligence

Jean-Baptiste Waldner

For the last 50 years, the power of integrated circuits has continued to grow. However, this performance will end up reaching its physical limit. What new ways will then be available to develop even more powerful and up-to-date systems? This book introduces the principles of quantic computing, the use of nano-tubes in molecular transistors and ADN computing. It suggests new fabrication methods for the 21st century and introduces new architecture models, ranging from the most conventional to the most radical. Using a chronological theme, it explains our unavoidable entry in the nano-device world: from the 1948 transistor to the microchip. It concludes by anticipating the changes in daily living: investments, impact on coding activities, nanocomputing systems implementation and IT job mutation.

Nano Mechanics and Materials

Wing Liu Kam

Nanotechnology is a progressive research and development topic with large amounts of venture capital and government funding being invested worldwide. Nano mechanics, in particular, is the study and characterization of the mechanical behaviour of individual atoms, systems and structures in response to various types of forces and loading conditions. This text, written by respected researchers in the field, informs researchers and practitioners about the fundamental concepts in nano mechanics and materials, focusing on their modelling via multiple scale methods and techniques. The book systematically covers the theory behind multi-particle and nanoscale systems, introduces multiple scale methods, and finally looks at contemporary applications in nano-structured and bio-inspired materials.

Network Infrastructure and Architecture

Krzysztof Iniewski

A Comprehensive, Thorough Introduction to High-Speed Networking Technologies and Protocols Network Infrastructure and Architecture: Designing High-Availability Networks takes a unique approach to the subject by covering the ideas underlying networks, the architecture of the network elements, and the implementation of these elements in optical and VLSI technologies. Additionally, it focuses on areas not widely covered in existing books: physical transport and switching, the process and technique of building networking hardware, and new technologies being deployed in the marketplace, such as Metro Wave Division Multiplexing (MWDM), Resilient Packet Rings (RPR), Optical Ethernet, and more. Divided into five succinct parts, the book covers: Optical transmission Networking protocols VLSI chips Data switching Networking elements and design Complete with case studies, examples, and exercises throughout, the book is complemented with chapter goals, summaries, and lists of key points to aid readers in grasping the material presented. Network Infrastructure and Architecture offers professionals, advanced undergraduates, and graduate students a fresh view on high-speed networking from the physical layer perspective.

High-Speed VLSI Interconnections

Ashok Goel K.

This Second Edition focuses on emerging topics and advances in the field of VLSI interconnections In the decade since High-Speed VLSI Interconnections was first published, several major developments have taken place in the field. Now, updated to reflect these advancements, this Second Edition includes new information on copper interconnections, nanotechnology circuit interconnects, electromigration in the copper interconnections, parasitic inductances, and RLC models for comprehensive analysis of interconnection delays and crosstalk. Each chapter is designed to exist independently or as a part of one coherent unit, and several appropriate exercises are provided at the end of each chapter, challenging the reader to gain further insight into the contents being discussed. Chapter subjects include: * Preliminary Concepts * Parasitic Resistances, Capacitances, and Inductances * Interconnection Delays * Crosstalk Analysis * Electromigration-Induced Failure Analysis * Future Interconnections High-Speed VLSI Interconnections, Second Edition is an indispensable reference for high-speed VLSI designers, RF circuit designers, and advanced students of electrical engineering.

Evolvable Designs of Experiments

Octavian Iordache

Adopting a groundbreaking approach, the highly regarded author shows how to design methods for planning increasingly complex experiments. He begins with a brief introduction to standard quality methods and the technology in standard electric circuits. The book then gives numerous examples of how to apply the proposed methodology in a series of real-life case studies. Although these case studies are taken from the printed circuit board industry, the methods are equally applicable to other fields of engineering.

Modern Physics for Engineers

Jasprit Singh

Linking physics fundamentals to modern technology-a highly applied primer for students and engineers Reminding us that modern inventions-new materials, information technologies, medical technological breakthroughs-are based on well-established fundamental principles of physics, Jasprit Singh integrates important topics from quantum mechanics, statistical thermodynamics, and materials science, as well as the special theory of relativity. He then goes a step farther and applies these fundamentals to the workings of electronic devices-an essential leap for anyone interested in developing new technologies. From semiconductors to nuclear magnetic resonance to superconducting materials to global positioning systems, Professor Singh draws on wide-ranging applications to demonstrate each concept under discussion. He downplays extended mathematical derivations in favor of results and their real-world design implication, supplementing the book with nearly 100 solved examples, 120 figures, and 200 end-of-chapter problems. Modern Physics for Engineers provides engineering and physics students with an accessible, unified introduction to the complex world underlying today's design-oriented curriculums. It is also an extremely useful resource for engineers and applied scientists wishing to take advantage of research opportunities in diverse fields.

CMOS Sigma-Delta Converters

Rocío Río del

A comprehensive overview of Sigma-Delta Analog-to-Digital Converters (ADCs) and a practical guide to their design in nano-scale CMOS for optimal performance. This book presents a systematic and comprehensive compilation of sigma-delta converter operating principles, the new advances in architectures and circuits, design methodologies and practical considerations − going from system-level specifications to silicon integration, packaging and measurements, with emphasis on nanometer CMOS implementation. The book emphasizes practical design issues – from high-level behavioural modelling in MATLAB/SIMULINK, to circuit-level implementation in Cadence Design FrameWork II. As well as being a comprehensive reference to the theory, the book is also unique in that it gives special importance on practical issues, giving a detailed description of the different steps that constitute the whole design flow of sigma-delta ADCs. The book begins with an introductory survey of sigma-delta modulators, their fundamentals architectures and synthesis methods covered in Chapter 1. In Chapter 2, the effect of main circuit error mechanisms is analysed, providing the necessary understanding of the main practical issues affecting the performance of sigma-delta modulators. The knowledge derived from the first two chapters is presented in the book as an essential part of the systematic top-down/bottom-up synthesis methodology of sigma-delta modulators described in Chapter 3, where a time-domain behavioural simulator named SIMSIDES is described and applied to the high-level design and verification of sigma-delta ADCs. Chapter 4 moves farther down from system-level to the circuit and physical level, providing a number of design recommendations and practical recipes to complete the design flow of sigma-delta modulators. To conclude the book, Chapter 5 gives an overview of the state-of-the-art sigma-delta ADCs, which are exhaustively analysed in order to extract practical design guidelines and to identify the incoming trends, design challenges as well as practical solutions proposed by cutting-edge designs. Offers a complete survey of sigma-delta modulator architectures from fundamentals to state-of-the art topologies, considering both switched-capacitor and continuous-time circuit implementations Gives a systematic analysis and practical design guide of sigma-delta modulators, from a top-down/bottom-up perspective, including mathematical models and analytical procedures, behavioural modeling in MATLAB/SIMULINK, macromodeling, and circuit-level implementation in Cadence Design FrameWork II, chip prototyping, and experimental characterization. Systematic compilation of cutting-edge sigma-delta modulators Complete description of SIMSIDES, a time-domain behavioural simulator implemented in MATLAB/SIMULINK Plenty of examples, case studies, and simulation test benches, covering the different stages of the design flow of sigma-delta modulators A number of electronic resources, including SIMSIDES, the statistical data used in the state-of-the-art survey, as well as many design examples and test benches are hosted on a companion website Essential reading for Researchers and electronics engineering practitioners interested in the design of high-performance data converters integrated in nanometer CMOS technologies; mixed-signal designers.

Synthesis of Arithmetic Circuits

Jean-Pierre Deschamps

A new approach to the study of arithmetic circuits In Synthesis of Arithmetic Circuits: FPGA, ASIC and Embedded Systems, the authors take a novel approach of presenting methods and examples for the synthesis of arithmetic circuits that better reflects the needs of today's computer system designers and engineers. Unlike other publications that limit discussion to arithmetic units for general-purpose computers, this text features a practical focus on embedded systems. Following an introductory chapter, the publication is divided into two parts. The first part, Mathematical Aspects and Algorithms, includes mathematical background, number representation, addition and subtraction, multiplication, division, other arithmetic operations, and operations in finite fields. The second part, Synthesis of Arithmetic Circuits, includes hardware platforms, general principles of synthesis, adders and subtractors, multipliers, dividers, and other arithmetic primitives. In addition, the publication distinguishes itself with: * A separate treatment of algorithms and circuits-a more useful presentation for both software and hardware implementations * Complete executable and synthesizable VHDL models available on the book's companion Web site, allowing readers to generate synthesizable descriptions * Proposed FPGA implementation examples, namely synthesizable low-level VHDL models for the Spartan II and Virtex families * Two chapters dedicated to finite field operations This publication is a must-have resource for students in computer science and embedded system designers, engineers, and researchers in the field of hardware and software computer system design and development. An Instructor Support FTP site is available from the Wiley editorial department.