An important reference for researchers in the field of metal-enzyme hybrid catalysis Artificial Metalloenzymes and MetalloDNAzymes in Catalysis offers a comprehensive review of the most current strategies, developed over recent decades, for the design, synthesis, and optimization of these hybrid catalysts as well as material about their application. The contributors—noted experts in the field—present information on the preparation, characterization, and optimization of artificial metalloenzymes in a timely and authoritative manner. The authors present a thorough examination of this interesting new platform for catalysis that combines the excellent selective recognition/binding properties of enzymes with transition metal catalysts. The text includes information on the various applications of metal-enzyme hybrid catalysts for novel reactions, offers insights into the latest advances in the field, and contains an informative perspective on the future: Explores the development of artificial metalloenzymes, the modern and strongly evolving research field on the verge of industrial application Contains a comprehensive reference to the research area of metal-enzyme hybrid catalysis that has experienced tremendous growth in recent years Includes contributions from leading researchers in the field Shows how this new catalysis combines the selective recognition/binding properties of enzymes with transition metal catalysts Written for catalytic chemists, bioinorganic chemists, biochemists, and organic chemists, Artificial Metalloenzymes and MetalloDNAzymes in Catalysis offers a unique reference to the fundamentals, concepts, applications, and the most recent developments for more efficient and sustainable synthesis.
A comprehensive overview and summary of recent achievements and the latest trends in bioinspired thermal materials. Following an introduction to different thermal materials and their effective heat transfer to other materials, the text discusses heat detection materials that are inspired by biological systems, such as fire beetles and butterflies. There then follow descriptions of materials with thermal management functionality, including those for evaporation and condensation, heat transfer and thermal insulation materials, as modeled on snake skins, polar bears and fire-resistant trees. A discussion of thermoresponsive materials with thermally switchable surfaces and controllable nanochannels as well as those with high thermal conductivity and piezoelectric sensors is rounded off by a look toward future trends in the bioinspired engineering of thermal materials. Straightforward and well structured, this is an essential reference for newcomers as well as experienced researchers in this exciting field.
The Handbook of Liquid Crystals is a unique compendium of knowledge on all aspects of liquid crystals. In over 2000 pages the Handbook provides detailed information on the basic principles of both low- and high-molecular weight materials, as well as the synthesis, characterization, modification, and applications (such as in computer displays or as structural materials) of all types of liquid crystals. The five editors of the Handbook are internationally renowned experts from both industry and academia and have drawn together over 70 leading figures in the field as authors. The four volumes of the Handbook are designed both to be used together or as stand-alone reference sources. Some users will require the whole set, others will be best served with one or two of the volumes. Volume 1 deals with the basic physical and chemical principles of liquid crystals, including structure-property relationships, nomenclature, phase behavior, characterization methods, and general synthesis and application strategies. As such this volume provides an excellent introduction to the field and a powerful learning and teaching tool for graduate students and above. Volumes 2A and 2B concentrate on low-molecular weight materials, for example those typically used in display technology. A high quality survey of the literature is provided along with full details of molecular design strategies, phase characterization and control, and applications development. These volumes are therefore by far the most detailed reference sources on these industrially very important materials, ideally suited for professionals in the field. Volume 3 concentrates on high-molecular weight, or polymeric, liquid crystals, some of which are found in structural applications and others occur as natural products of living systems. A high-quality literature survey is complemented by full detail of the synthesis, processing, analysis, and applications of all important materials classes. This volume is the most comprehensive reference source on these materials, and is therefore ideally suited for professionals in the field.
The Handbook of Liquid Crystals is a unique compendium of knowledge on all aspects of liquid crystals. In over 2000 pages the Handbook provides detailed information on the basic principles of both low- and high-molecular weight materials, as well as the synthesis, characterization, modification, and applications (such as in computer displays or as structural materials) of all types of liquid crystals. The five editors of the Handbook are internationally renowned experts from both industry and academia and have drawn together over 70 leading figures in the field as authors. The three volumes of the Handbook are designed both to be used together or as stand-alone reference sources. Some users will require the whole set, others will be best served with one or two of the volumes. Volume 1 deals with the basic physical and chemical principles of liquid crystals, including structure-property relationships, nomenclature, phase behavior, characterization methods, and general synthesis and application strategies. As such this volume provides an excellent introduction to the field and a powerful learning and teaching tool for graduate students and above. Volume 2 concentrates on low-molecular weight materials, for example those typically used in display technology. A high quality survey of the literature is provided along with full details of molecular design strategies, phase characterization and control, and applications development. This volume is therefore by far the most detailed reference source on these industrially very important materials, ideally suited for professionals in the field. Volume 3 concentrates on high-molecular weight, or polymeric, liquid crystals, some of which are found in structural applications and others occur as natural products of living systems. A high-quality literature survey is complemented by full detail of the synthesis, processing, analysis, and applications of all important materials classes. This volume is the most comprehensive reference source on these materials, and is therefore ideally suited for professionals in the field.
The Handbook of Liquid Crystals is a unique compendium of knowledge on all aspects of liquid crystals. In over 2000 pages the Handbook provides detailed information on the basic principles of both low- and high-molecular weight materials, as well as the synthesis, characterization, modification, and applications (such as in computer displays or as structural materials) of all types of liquid crystals. The five editors of the Handbook are internationally renowned experts from both industry and academia and have drawn together over 70 leading figures in the field as authors. The four volumes of the Handbook are designed both to be used together or as stand-alone reference sources. Some users will require the whole set, others will be best served with one or two of the volumes. Volume 1 deals with the basic physical and chemical principles of liquid crystals, including structure-property relationships, nomenclature, phase behavior, characterization methods, and general synthesis and application strategies. As such this volume provides an excellent introduction to the field and a powerful learning and teaching tool for graduate students and above. Volumes 2A and 2B concentrate on low-molecular weight materials, for example those typically used in display technology. A high quality survey of the literature is provided along with full details of molecular design strategies, phase characterization and control, and applications development. These volumes are therefore by far the most detailed reference sources on these industrially very important materials, ideally suited for professionals in the field. Volume 3 concentrates on high-molecular weight, or polymeric, liquid crystals, some of which are found in structural applications and others occur as natural products of living systems. A high-quality literature survey is complemented by full detail of the synthesis, processing, analysis, and applications of all important materials classes. This volume is the most comprehensive reference source on these materials, and is therefore ideally suited for professionals in the field.
High purity, thin metal coatings have a variety of important commercial applications, for example, in the microelectronics industry, as catalysts, as protective and decorative coatings as well as in gas-diffusion barriers. This book offers detailed, up- to-date coverage of the chemistry behind the vapor deposition of different metals from organometallic precursors. In nine chapters, the CVD of metals including aluminum, tungsten, gold, silver, platinum, palladium, nickel, as well as copper from copper(I) and copper(II) compounds is covered. The synthesis and properties of the precursors, the growth process, morphology, quality and adhesion of the resulting films as well as laser- assisted, ion- assisted and plasma-assisted methods are discussed. Present applications and prospects for future developments are summarized. With ca. 1000 references and a glossary, this book is a unique source of in-depth information. It is indispensable for chemists, physicists, engineers and materials scientists working with metal- coating processes and technologies. From Reviews: 'I highly recommend this book to anyone interested in learning more about the chemistry of metal CVD.' J. Am Chem. Soc.
Hype, hope, or horror? A vivid look at nanotechnology, written by an insider and experienced science writer. The variety of new products and technologies that will spin out of nanoscience is limited only by the imagination of the scientists, engineers and entrepreneurs drawn to this new field. Steve Edwards concentrates on the reader's self interest: no military gadgets, wild fantasies of horror nanobot predators and other sci-fi stuff, but presents a realistic view of how this new field of technology will affect people in the near future. He is in close contact with many pioneers in nanotechnology, and includes their backgrounds to allow readers, especially college students considering a career in the field, to better imagine themselves in such positions. However, technology does not develop in a vacuum, and this book also looks at the social, political and economic changes attendant upon the development of nanotechnology. For the science-interested general public as well as chemists, students, lecturers, chemical organizations, materials scientists, journalists, politicians, industry, physicists, and biologists.
Here, the well-known editor in the field of electrocrystallization and his team of excellent international authors guarantee the high quality of the contributions. Clearly structured in two main parts, this book reviews the fundamentals and applications of electrocrystallization processes in nanotechnology. The first part, «Fundamentals» covers the basic concepts of electrocrystallization, computer simulations of low-dimensional metal phase formation, electrodeposition in templates and nanocavities, nanoscale electrocrystallization from ionic liquids, and superconformal electrodeposition of metals. The second part, «Preparation and properties of nanostructures», includes nanostructuring by STM tip induced localized electrocrystallization of metals, fabrication of ordered anodic nanoporous Al2O3 layers and their application, preparation of nanogaps, nanocontacts, nanowires and nanodots by selective electrochemical deposition, as well as electrodeposition of magnetic nanostructures and multilayers
An overview of recent developments in the field of first-order phase transitions, which may be considered a continuation of the previous work 'Aggregation Phenomena in Complex Systems', covering work done and discussed since then. Each chapter features a different aspect of the field written by international specialists, and covers such topics as nucleation and crystallization kinetic of silicate glasses, nucleation in concentration gradients, the determination of coefficients of emission of nucleation theory, diamonds from vitreous carbon.