The book presents the principles and methods of holographic interferometry – a coherent-optical measurement technique for deformation and stress analysis, for the determination of refractive-index distributions, or applied to non-destructive testing. Emphasis of the book is on the quantitative computer-aided evaluation of the holographic interferograms. Based upon wave-optics the evaluation methods, their implementation in computer-algorithms, and their applications in engineering are described.
An essential reference for optical sensor system design This is the first text to present an integrated view of the optical and mathematical analysis tools necessary to understand computational optical system design. It presents the foundations of computational optical sensor design with a focus entirely on digital imaging and spectroscopy. It systematically covers: Coded aperture and tomographic imaging Sampling and transformations in optical systems, including wavelets and generalized sampling techniques essential to digital system analysis Geometric, wave, and statistical models of optical fields The basic function of modern optical detectors and focal plane arrays Practical strategies for coherence measurement in imaging system design The sampling theory of digital imaging and spectroscopy for both conventional and emerging compressive and generalized measurement strategies Measurement code design Linear and nonlinear signal estimation The book concludes with a review of numerous design strategies in spectroscopy and imaging and clearly outlines the benefits and limits of each approach, including coded aperture and imaging spectroscopy, resonant and filter-based systems, and integrated design strategies to improve image resolution, depth of field, and field of view. Optical Imaging and Spectroscopy is an indispensable textbook for advanced undergraduate and graduate courses in optical sensor design. In addition to its direct applicability to optical system design, unique perspectives on computational sensor design presented in the text will be of interest for sensor designers in radio and millimeter wave, X-ray, and acoustic systems.
The new edition of this widely respected text provides comprehensive and up-to-date coverage of the effects of biological–physical interactions in the oceans from the microscopic to the global scale. considers the influence of physical forcing on biological processes in a wide range of marine habitats including coastal estuaries, shelf-break fronts, major ocean gyres, coral reefs, coastal upwelling areas, and the equatorial upwelling system investigates recent significant developments in this rapidly advancing field includes new research suggesting that long-term variability in the global atmospheric circulation affects the circulation of ocean basins, which in turn brings about major changes in fish stocks. This discovery opens up the exciting possibility of being able to predict major changes in global fish stocks written in an accessible, lucid style, this textbook is essential reading for upper-level undergraduates and graduate students studying marine ecology and biological oceanography
A general introduction to surface and interfacial forces, perfectly combining theoretical concepts, experimental techniques and practical applications. In this completely updated edition all the chapters have been thoroughly revised and extended to cover new developments and approaches with around 15% new content. A large part of the book is devoted to surface forces between solid surfaces in liquid media, and while a basic knowledge of colloid and interface science is helpful, it is not essential since all important concepts are explained and the theoretical concepts can be understood with an intermediate knowledge of mathematics. A number of exercises with solutions and the end-of-chapter summaries of the most important equations, facts and phenomena serve as additional tools to strengthen the acquired knowledge and allow for self-study. The result is a readily accessible text that helps to foster an understanding of the intricacies of this highly relevant topic.
In this new approach for a consistent transport theory in nuclear fusion processes Leslie Woods draws on over 40 years of fusion research to directly compare theoretical findings with experimental results, while taking into account recently discovered phenomena. This is thus the first book to find theoretical explanations to the sometimes-puzzling tokamak observations. Following a look at the quest for fusion power, the author goes on to examine tokamak magnetic fields and energy losses, as well as plasma flow and loop voltage. There is also a discussion of the technical constraints on the recently announced ITER design.
An accessible introduction to nuclear and particle physics with equal coverage of both topics, this text covers all the standard topics in particle and nuclear physics thoroughly and provides a few extras, including chapters on experimental methods; applications of nuclear physics including fission, fusion and biomedical applications; and unsolved problems for the future. It includes basic concepts and theory combined with current and future applications. An excellent resource for physics and astronomy undergraduates in higher-level courses, this text also serves well as a general reference for graduate studies.
This updated Second Edition covers current state-of-the-art technology and instrumentation The Second Edition of this well-respected publication provides updated coverage of basic nondestructive testing (NDT) principles for currently recognized NDT methods. The book provides information to help students and NDT personnel qualify for Levels I, II, and III certification in the NDT methods of their choice. It is organized in accordance with the American Society for Nondestructive Testing (ASNT) Recommended Practice No. SNT-TC-1A (2001 Edition). Following the author's logical organization and clear presentation, readers learn both the basic principles and applications for the latest techniques as they apply to a wide range of disciplines that employ NDT, including space shuttle engineering, digital technology, and process control systems. All chapters have been updated and expanded to reflect the development of more advanced NDT instruments and systems with improved monitors, sensors, and software analysis for instant viewing and real-time imaging. Keeping pace with the latest developments and innovations in the field, five new chapters have been added: * Vibration Analysis * Laser Testing Methods * Thermal/Infrared Testing * Holography and Shearography * Overview of Recommended Practice No. SNT-TC-1A, 2001 Each chapter covers recommended practice topics such as basic principles or theory of operation, method advantages and disadvantages, instrument description and use, brief operating and calibrating procedures, and typical examples of flaw detection and interpretation, where applicable.
Most research in the life sciences involves a core set of molecular-based equipment and methods, for which there is no shortage of step-by-step protocols. Nonetheless, there remains an exceedingly high number of inquiries placed to commercial technical support groups, especially regarding problems. Molecular Biology Problem Solver: A Laboratory Guide asks the reader to consider crucial questions, such as: Have you selected the most appropriate research strategy? Have you identified the issues critical to your successful application of a technique? Are you familiar with the limitations of a given technique? When should common procedural rules of thumb not be applied? What strategies could you apply to resolve a problem? A unique question-based format reviews common assumptions and laboratory practices, with the aim of offering a firm understanding of how techniques and procedures work, as well as how to avoid problems. Some major issues explored by the book's expert contributors include: Working safely with biological samples and radioactive materials DNA and RNA purification PCR Protein and nucleid acid hybridization Prokaryotic and eukaryotic expression systems Properly using and maintaining laboratory equipment
Wiley is proud to announce the publication of the first ever broad-based textbook introduction to Bioinformatics and Functional Genomics by a trained biologist, experienced researcher, and award-winning instructor. In this new text, author Jonathan Pevsner, winner of the 2001 Johns Hopkins University «Teacher of the Year» award, explains problem-solving using bioinformatic approaches using real examples such as breast cancer, HIV-1, and retinal-binding protein throughout. His book includes 375 figures and over 170 tables. Each chapter includes: Problems, discussion of Pitfalls, Boxes explaining key techniques and math/stats principles, Summary, Recommended Reading list, and URLs for freely available software. The text is suitable for professionals and students at every level, including those with little to no background in computer science.
This comprehensive reference covers the comparative methodology involved in studying molecular evolution. Providing a practical introduction to the role of bioinformatics in comparative genomics, this publication further discusses the basic technology used in genome sequencing projects and provides an overview of genome storage databases currently in use. This timely and cutting-edge text also: Reviews the basic principles of genomics and gene expression analysis Discusses analytic methods in proteomics and transcriptomics Includes a comprehensive list of Web resource