Meat has been treated for centuries with rock salt as a means of preservation. However, only one century has passed since the German researchers, Polenske in 1891, Kisshalt in 1899, and Lehmann in 1899, discovered that the active component in the curing process was nitrite. Soon after the role of nitrite as a meat curing agent was revealed, government regulators placed guidelines on the level of nitrite and nitrate permitted for use in cured meat formulations. In the late 1960s and early 1970s, the development of the so-called «nitrite problem» surfaced because of the detection of N-nitrosamines in processed meats. The industry was in an uproar and the issue was of paramount interest to scientists and the public. A major technical advance in the analytical technique for N-nitrosamine detection was achieved when Thermo Electron of Waltham, Massachusetts introduced the thermal energy analyzer (TEA). This unit allowed the screening of a large number of samples for nitrosamine with only a minimum preparation. The role of nitrite in revealing the desired and unique flavor of cured products, perhaps by suppressing the formation of lipid oxidation products was another development in revealing other properties of nitrite. Above all, the antimicrobial role of nitrite, together with salt, had a major influence on the popularity of nitrite/nitrate in food preservation. This book provides a review of the desirable attributes which sodium nitrite confers to meat during processing, as well as drawbacks of nitrite usage, i.e., the presence of N-nitrosoamines. In addition, solutions for the curing of meat without the use of nitrite are presented. An examination of a multicomponent nitrite-free curing system entailing the color, flavor, and microbial protection of such a system is given.
Bio-nanotechnology is the key functional technology of the 21st century. It is a fusion of biology and nanotechnology based on the principles and chemical pathways of living organisms, and refers to the functional applications of biomolecules in nanotechnology. It encompasses the study, creation, and illumination of the connections between structural molecular biology, nutrition and nanotechnology, since the development of techniques of nanotechnology might be guided by studying the structure and function of the natural nano-molecules found in living cells. Biology offers a window into the most sophisticated collection of functional nanostructures that exists. This book is a comprehensive review of the state of the art in bio-nanotechnology with an emphasis on the diverse applications in food and nutrition sciences, biomedicine, agriculture and other fields. It describes in detail the currently available methods and contains numerous references to the primary literature, making this the perfect “field guide” for scientists who want to explore the fascinating world of bio-nanotechnology. Safety issues regarding these new technologies are examined in detail. The book is divided into nine sections – an introductory section, plus: Nanotechnology in nutrition and medicine Nanotechnology, health and food technology applications Nanotechnology and other versatile applications Nanomaterial manufacturing Applications of microscopy and magnetic resonance in nanotechnology Applications in enhancing bioavailability and controlling pathogens Safety, toxicology and regulatory aspects Future directions of bio-nanotechnology The book will be of interest to a diverse range of readers in industry, research and academia, including biologists, biochemists, food scientists, nutritionists and health professionals.
Cereal and pulse crops are staple foods that provide essential nutrients to many populations of the world. Traditionally, whole grains were consumed but most current foods are derived from refined fractions of cereal and pulse crops. Consumption of processed or refined products may reduce the health benefits of food. In wheat-based processed foods, for example, the removed 40% of the grain (mainly the bran and the germ of the wheat grain) contains the majority of the health beneficial components. These components, particularly non-essential phytochemicals such as carotenoids, polyphenols, phytosterols/ stanols, and dietary fibers, have been shown to reduce the risk of major chronic diseases of humans, such as cancer, cardiovascular diseases, and Parkinson’s disease. Such bioactives are therefore good candidates for ingredients of nutraceuticals and functional foods. There are many factors that can affect the bioactive content of cereal and pulse-based food ingredients, including genetics, growing and storage conditions, post-harvest treatments, food formulation and processing. All of these factors ultimately affect human health and wellness. Bioavailability is also important for these compounds for exerting their protective roles. Cereals and Pulses: Nutraceutical Properties and Health Benefits provides a summary of current research findings related to phytochemical composition and properties of cereal and pulse crops. The nutraceutical properties of each major cereal and pulse are discussed. Coverage of cereals and pulse crops includes barley, oats, rice, rye, corn, adlay, wheat, buckwheat, psyllium, sorghum, millet, common beans, field peas, faba beans, chickpea, lentil and soybeans. Chapters for each crop discuss methods to improve crop utilization, nutraceutical components and properties, bioactive compositions, antioxidant properties, beneficial health effects, disease prevention activities, and areas for future research. Also included are two chapters that examine the beneficial health properties of dietary fibers and antioxidants. Edited and written by an international team of respected researchers, this book is a reference guide for scientists working in food ingredients, food product research and development, functional foods and nutraceuticals, crop breeding and genetics, human nutrition, post-harvest treatment and processing of cereal grains and pulses. It will enable them to effect value-added food innovation for health promotion and disease risk reduction.
A comprehensive reference for assessing the antioxidant potential of foods and essential techniques for developing healthy food products Measurement of Antioxidant Activity and Capacity offers a much-needed resource for assessing the antioxidant potential of food and includes proven approaches for creating healthy food products. With contributions from world-class experts in the field, the text presents the general mechanisms underlying the various assessments, the types of molecules detected, and the key advantages and disadvantages of each method. Both thermodynamic (i.e. efficiency of scavenging reactive species) and kinetic (i.e. rates of hydrogen atom or electron transfer reactions) aspects of available methods are discussed in detail. A thorough description of all available methods provides a basis and rationale for developing standardized antioxidant capacity/activity methods for food and nutraceutical sciences and industries. This text also contains data on new antioxidant measurement techniques including nanotechnological methods in spectroscopy and electrochemistry, as well as on innovative assays combining several principles. Therefore, the comparison of conventional methods versus novel approaches is made possible. This important resource: Offers suggestions for assessing the antioxidant potential of foods and their components Includes strategies for the development of healthy functional food products Contains information for identifying antioxidant activity in the body Presents the pros and cons of the available antioxidant determination methods, and helps in the selection of the most appropriate method Written for researchers and professionals in the nutraceutical and functional food industries,academia and government laboratories, this text includes the most current knowledge in order to form a common language between research groups and to contribute to the solution of critical problems existing for all researchers working in this field.
The only single-source reference on the science of olives and olive oil nutrition and health benefits Olives and Olive Oil as Functional Foods is the first comprehensive reference on the science of olives and olive oil. While the main focus of the book is on the fruit’s renowned health-sustaining properties, it also provides an in-depth coverage of a wide range of topics of vital concern to producers and researchers, including post-harvest handling, packaging, analysis, sensory evaluation, authentication, waste product utilization, global markets, and much more. People have been cultivating olives for more than six millennia, and olives and olive oil have been celebrated in songs and legends for their life-sustaining properties since antiquity. However, it is only within the last several decades that the unique health benefits of their consumption have become the focus of concerted scientific studies. It is now known that olives and olive oil contain an abundance of phenolic antioxidants, as well as the anti-cancer compounds such as squalene and terpenoids. This centerpiece of the Mediterranean diet has been linked to a greatly reduced risk of heart disease and lowered cancer risk. Bringing together contributions from some of the world’s foremost experts on the subject, this book: Addresses the importance of olives and olive oil for the agricultural economy and the relevance of its bioactive components to human health Explores the role that olive oil plays in reducing oxidative stress in cells-a well-known risk factor in human health Provides important information about new findings on olive oil and lipids which reviews the latest research Explores topics of interest to producers, processors, and researchers, including the fruit’s chemical composition, processing considerations, quality control, safety, traceability, and more Edited by two scientists world-renowned for their pioneering work on olive oil and human health, this book is an indispensable source of timely information and practical insights for agricultural and food scientists, nutritionists, dieticians, physicians, and all those with a professional interest in food, nutrition, and health.
The global market for seafood products continues to increase year by year. Food safety considerations are as crucial as ever in this sector, and higher standards of quality are demanded even as products are shipped greater distances around the world. The current global focus on the connection between diet and health drives growth in the industry and offers commercial opportunities on a number of fronts. There is great interest in the beneficial effects of marine functional compounds such as omega-3 polyunsaturated fatty acids. Seafoods are well-known as low calorie foods, and research continues into the nutritional effects on, for example, obesity and heart disease. In addition, by-products of marine food processing can be used in nutraceutical applications. This book is a resource for those interested in the latest advances in the science and technology of seafood quality and safety as well as new developments in the nutritional effects and applications of marine foods. It includes chapters on the practical evaluation of seafood quality; novel approaches in preservation techniques; flavour chemistry and analysis; textural quality and measurement; packaging; the control of food-borne pathogens and seafood toxins. New research on the health-related aspects of marine food intake are covered, as well as the use of seafoods as sources of bioactives and nutraceuticals. The book is directed at scientists and technologists in academia, government laboratories and the seafood industries, including quality managers, processors and sensory scientists.