Igor Ushakov A.

Список книг автора Igor Ushakov A.



    Optimal Resource Allocation. With Practical Statistical Applications and Theory

    Igor Ushakov A.

    A UNIQUE ENGINEERING AND STATISTICAL APPROACH TO OPTIMAL RESOURCE ALLOCATION Optimal Resource Allocation: With Practical Statistical Applications and Theory features the application of probabilistic and statistical methods used in reliability engineering during the different phases of life cycles of technical systems. Bridging the gap between reliability engineering and applied mathematics, the book outlines different approaches to optimal resource allocation and various applications of models and algorithms for solving real-world problems. In addition, the fundamental background on optimization theory and various illustrative numerical examples are provided. The book also features: An overview of various approaches to optimal resource allocation, from classical Lagrange methods to modern algorithms based on ideas of evolution in biology Numerous exercises and case studies from a variety of areas, including communications, transportation, energy transmission, and counterterrorism protection The applied methods of optimization with various methods of optimal redundancy problem solutions as well as the numerical examples and statistical methods needed to solve the problems Practical thoughts, opinions, and judgments on real-world applications of reliability theory and solves practical problems using mathematical models and algorithms Optimal Resource Allocation is a must-have guide for electrical, mechanical, and reliability engineers dealing with engineering design and optimal reliability problems. In addition, the book is excellent for graduate and PhD-level courses in reliability theory and optimization.

    Probabilistic Reliability Models

    Igor Ushakov A.

    Practical Approaches to Reliability Theory in Cutting-Edge Applications Probabilistic Reliability Models helps readers understand and properly use statistical methods and optimal resource allocation to solve engineering problems. The author supplies engineers with a deeper understanding of mathematical models while also equipping mathematically oriented readers with a fundamental knowledge of the engineeringrelated applications at the center of model building. The book showcases the use of probability theory and mathematical statistics to solve common, real-world reliability problems. Following an introduction to the topic, subsequent chapters explore key systems and models including: • Unrecoverable objects and recoverable systems • Methods of direct enumeration • Markov models and heuristic models • Performance effectiveness • Time redundancy • System survivability • Aging units and their related systems • Multistate systems Detailed case studies illustrate the relevance of the discussed methods to real-world technical projects including software failure avalanches, gas pipelines with underground storage, and intercontinental ballistic missile (ICBM) control systems. Numerical examples and detailed explanations accompany each topic, and exercises throughout allow readers to test their comprehension of the presented material. Probabilistic Reliability Models is an excellent book for statistics, engineering, and operations research courses on applied probability at the upper-undergraduate and graduate levels. The book is also a valuable reference for professionals and researchers working in industry who would like a mathematical review of reliability models and the relevant applications.