This edition of the popular text incorporates recent advances in neurobiology enabled by modern molecular biology techniques. Understanding how the brain works from a molecular level allows research to better understand behaviours, cognition, and neuropathologies. Since the appearance six years ago of the second edition, much more has been learned about the molecular biology of development and its relations with early evolution. This «evodevo» (as it has come to be known) framework also has a great deal of bearing on our understanding of neuropathologies as dysfunction of early onset genes can cause neurodegeneration in later life. Advances in our understanding of the genomes and proteomes of a number of organisms also greatly influence our understanding of neurobiology. * Well known and widely used as a text throughout the UK, good reviews from students and lecturers. * Good complement to Fundementals of Psychopharmacology by Brian Leonard. This book will be of particular interest to biomedical undergraduates undertaking a neuroscience unit, neuroscience postgraduates, physiologists, pharmacologists. It is also a useful basic reference for university libraries. Maurice Elphick, Queen Mary, University of London «I do like this book and it is the recommended textbook for my course in Molecular Neuroscience. The major strength of the book is the overall simplicity of the format both in terms of layout and diagrams.»
Since publication of the first edition, huge developments have taken place in sensory biology research and new insights have been provided in particular by molecular biology. These show the similarities in the molecular architecture and in the physiology of sensory cells across species and across sensory modality and often indicate a common ancestry dating back over half a billion years. Biology of Sensory Systems has thus been completely revised and takes a molecular, evolutionary and comparative approach, providing an overview of sensory systems in vertebrates, invertebrates and prokaryotes, with a strong focus on human senses. Written by a renowned author with extensive teaching experience, the book covers, in six parts, the general features of sensory systems, the mechanosenses, the chemosenses, the senses which detect electromagnetic radiation, other sensory systems including pain, thermosensitivity and some of the minority senses and, finally, provides an outline and discussion of philosophical implications. New in this edition: Greater emphasis on molecular biology and intracellular mechanisms New chapter on genomics and sensory systems Sections on TRP channels, synaptic transmission, evolution of nervous systems, arachnid mechanosensitive sensilla and photoreceptors, electroreception in the Monotremata, language and the FOXP2 gene, mirror neurons and the molecular biology of pain Updated passages on human olfaction and gustation. Over four hundred illustrations, boxes containing supplementary material and self-assessment questions and a full bibliography at the end of each part make Biology of Sensory Systems essential reading for undergraduate students of biology, zoology, animal physiology, neuroscience, anatomy and physiological psychology. The book is also suitable for postgraduate students in more specialised courses such as vision sciences, optometry, neurophysiology, neuropathology, developmental biology. Praise from the reviews of the first edition: «An excellent advanced undergraduate/postgraduate textbook.» ASLIB BOOK GUIDE «The emphasis on comparative biology and evolution is one of the distinguishing features of this self-contained book. .... this is an informative and thought-provoking text…» TIMES HIGHER EDUCATIONAL SUPPLEMENT