Praise for the First Edition of Common Errors in Statistics " . . . let me recommend Common Errors to all those who interact with statistics, whatever their level of statistical understanding . . . " –Stats 40 « . . . written . . . for the people who define good practice rather than seek to emulate it.» –Journal of Biopharmaceutical Statistics « . . . highly informative, enjoyable to read, and of potential use to a broad audience. It is a book that should be on the reference shelf of many statisticians and researchers.» –The American Statistician « . . . I found this book the most easily readable statistics book ever. The credit for this certainly goes to Phillip Good.» –E-STREAMS A tried-and-true guide to the proper application of statistics Now in a second edition, the highly readable Common Errors in Statistics (and How to Avoid Them) lays a mathematically rigorous and readily accessible foundation for understanding statistical procedures, problems, and solutions. This handy field guide analyzes common mistakes, debunks popular myths, and helps readers to choose the best and most effective statistical technique for each of their tasks. Written for both the newly minted academic and the professional who uses statistics in their work, the book covers creating a research plan, formulating a hypothesis, specifying sample size, checking assumptions, interpreting p-values and confidence intervals, building a model, data mining, Bayes' Theorem, the bootstrap, and many other topics. The Second Edition has been extensively revised to include: * Additional charts and graphs * Two new chapters, Interpreting Reports and Which Regression Method? * New sections on practical versus statistical significance and nonuniqueness in multivariate regression * Added material from the authors' online courses at statistics.com * New material on unbalanced designs, report interpretation, and alternative modeling methods With a final emphasis on both finding solutions and the great value of statistics when applied in the proper context, this book is eminently useful to students and professionals in the fields of research, industry, medicine, and government.
A highly accessible alternative approach to basic statistics Praise for the First Edition: «Certainly one of the most impressive little paperback 200-page introductory statistics books that I will ever see . . . it would make a good nightstand book for every statistician.»—Technometrics Written in a highly accessible style, Introduction to Statistics through Resampling Methods and R, Second Edition guides students in the understanding of descriptive statistics, estimation, hypothesis testing, and model building. The book emphasizes the discovery method, enabling readers to ascertain solutions on their own rather than simply copy answers or apply a formula by rote. The Second Edition utilizes the R programming language to simplify tedious computations, illustrate new concepts, and assist readers in completing exercises. The text facilitates quick learning through the use of: More than 250 exercises—with selected «hints»—scattered throughout to stimulate readers' thinking and to actively engage them in applying their newfound skills An increased focus on why a method is introduced Multiple explanations of basic concepts Real-life applications in a variety of disciplines Dozens of thought-provoking, problem-solving questions in the final chapter to assist readers in applying statistics to real-life applications Introduction to Statistics through Resampling Methods and R, Second Edition is an excellent resource for students and practitioners in the fields of agriculture, astrophysics, bacteriology, biology, botany, business, climatology, clinical trials, economics, education, epidemiology, genetics, geology, growth processes, hospital administration, law, manufacturing, marketing, medicine, mycology, physics, political science, psychology, social welfare, sports, and toxicology who want to master and learn to apply statistical methods.
This book grew out of an online interactive offered through statcourse.com, and it soon became apparent to the author that the course was too limited in terms of time and length in light of the broad backgrounds of the enrolled students. The statisticians who took the course needed to be brought up to speed both on the biological context as well as on the specialized statistical methods needed to handle large arrays. Biologists and physicians, even though fully knowledgeable concerning the procedures used to generate microaarrays, EEGs, or MRIs, needed a full introduction to the resampling methods—the bootstrap, decision trees, and permutation tests, before the specialized methods applicable to large arrays could be introduced. As the intended audience for this book consists both of statisticians and of medical and biological research workers as well as all those research workers who make use of satellite imagery including agronomists and meteorologists, the book provides a step-by-step approach to not only the specialized methods needed to analyze the data from microarrays and images, but also to the resampling methods, step-down multi-comparison procedures, multivariate analysis, as well as data collection and pre-processing. While many alternate techniques for analysis have been introduced in the past decade, the author has selected only those techniques for which software is available along with a list of the available links from which the software may be purchased or downloaded without charge. Topical coverage includes: very large arrays; permutation tests; applying permutation tests; gathering and preparing data for analysis; multiple tests; bootstrap; applying the bootstrap; classification methods; decision trees; and applying decision trees.