The first book to explore the potential of tunable functionalities in organic and hybrid nanostructured materials in a unified manner. The highly experienced editor and a team of leading experts review the promising and enabling aspects of this exciting materials class, covering the design, synthesis and/or fabrication, properties and applications. The broad topical scope includes organic polymers, liquid crystals, gels, stimuli-responsive surfaces, hybrid membranes, metallic, semiconducting and carbon nanomaterials, thermoelectric materials, metal-organic frameworks, luminescent and photochromic materials, and chiral and self-healing materials.
This book focuses on the exciting topic on self-organized organic semiconductors – from materials to device applications. It offers up-to-date and accessible coverage of self-organized semiconductors for organic chemistry, polymer science, liquid crystals, materials science, material engineering, electrical engineering, chemical engineering, optics, optic-electronics, nanotechnology and semiconductors. Chapters cover chemistry, physics, processing, and characterization. The applications include photovoltaics, light-emitting diodes (LEDs), and transistors.
The chemistry, physics, and applications of liquid crystals beyond LCDs Liquid Crystals (LCs) combine order and mobility on a molecular and supramolecular level. But while these remarkable states of matter are most commonly associated with visual display technologies, they have important applications for a variety of other fields as well. Liquid Crystals Beyond Displays: Chemistry, Physics, and Applications considers these, bringing together cutting-edge research from some of the most promising areas of LC science. Featuring contributions from respected researchers from around the globe, this edited volume emphasizes the chemistry, physics, and applications of LCs in areas such as photovoltaics, light-emitting diodes, filed-effect transistors, lasers, molecular motors, nanophotonics and biosensors. Specific chapters look at magnetic LCs, lyotropic chromonic LCs, LC-based chemical sensors, LCs in metamaterials, and much more. Introducing readers to the fundamentals of LC science through the use of illustrative examples, Liquid Crystals Beyond Displays covers not only the most recent research in the myriad areas in which LCs are being utilized, but also looks ahead, addressing potential future developments. Designed for physicists, chemists, engineers, and biologists working in academia or industry, as well as graduate students specializing in LC technology, this is the first book to consider LC applications across a wide range of fields.
There has been concerted effort across scientific disciplines to develop artificial materials and systems that can help researchers understand natural stimuli-responsive activities. With its up-to-date coverage on intelligent stimuli-responsive materials, Intelligent Stimuli-Responsive Materials provides research, industry, and academia professionals with the fundamentals and principles of intelligent stimuli-responsive materials, with a focus on methods and applications. Emphasizing nanostructures and applications for a broad range of fields, each chapter comprehensively covers a different stimuli-responsive material and discusses its developments, advances, challenges, analytical techniques, and applications.