Пётр Пылов

Список книг автора Пётр Пылов



    Асимптотический анализ поведения прикладных моделей машинного обучения

    Пётр Пылов

    Представлена разработка и аналитика прикладных моделей машинного обучения, применяемых в высоконагруженных интеллектуальных системах промышленного уровня. Для студентов, изучающих информационные технологии. Может быть полезно специалистам прикладной сферы анализа данных.

    Основы работы с моделями машинного и глубокого обучения

    Пётр Пылов

    Представлены необходимые инструменты для программной и математической разработки моделей прикладного машинного и глубокого обучения. Показаны базовые принципы и аспекты, которыми оперирует область Data Science. Дан ознакомительный экскурс по теоретической составляющей курса, для каждой рассмотренной модели машинного/глубокого обучения поставлена в соответствие её прикладная реализация. Для студентов, обучающихся по направлению подготовки «Искусственный интеллект». Может быть полезно специалистам в области искусственного интеллекта.

    Разработка интеллектуальных систем для обработки сигналов с датчиков давления

    Пётр Пылов

    Показана разработка собственных элементов датчиков давления, которые функционируют в неразрывной связи с программным обеспечением. Даны основы и способы разработки подобных систем, которые можно повторить самостоятельно. Для специалистов в области искусственного интеллекта. Может быть полезно студентам, обучающимся по направлению подготовки «Искусственный интеллект».

    Математические и программные методы построения моделей глубокого обучения

    Пётр Пылов

    Показана разработка и аналитика прикладных моделей глубокого обучения, применяемых в высоконагруженных интеллектуальных системах промышленного уровня. Изучение математических архитектур моделей глубокого обучения позволит не только разрабатывать, но и внедрять разработанные решения без помощи сторонних программных библиотек, что увеличивает быстродействие всего программного решения в целом. Для студентов и сотрудников высших технических учебных заведений, а также специалистов прикладной сферы анализа данных.

    Алгоритмы Data Science

    Пётр Пылов

    Рассмотрен полный каскад разработки моделей искусственного интеллекта. Проанализирована область Data Science, из которой выделены все необходимые для прикладной сферы алгоритмы машинного обучения, расположенные по уровню возрастания сложности работы с ними. Для студентов, изучающих информационные технологии. Может быть полезно как начинающим программистам, так и специалистам высокого уровня.