В учебном пособии рассмотрены такие основные разделы теории нечетких множеств, как нечеткие отношения, нечеткие числа, нечеткий логический вывод, а также прикладные разделы, связанные с применением нечеткой математики в анализе данных (нечеткая регрессия, нечеткая кластеризация, нечеткая классификация) и принятии решений (нечеткая оптимизация, многокритериальные методы принятия решений с нечеткими данными, ранжирование нечетких данных, нечеткое моделирование). Каждая глава заканчивается разделом задач для самостоятельного решения. Поэтому данное пособие можно использовать не только как учебник, но и как задачник на семинарских занятиях или для самостоятельной подготовки. Учебное пособие адресовано студентам, обучающимся по образовательным программам, связанным с анализом данных и принятием решений («Прикладная математика и информатика», «Экономика», «Экономика и статистика», «Бизнес-информатика» и др.). Книга также будет полезна аспирантам и преподавателям образовательных программ, как непосредственно связанных с анализом данных, так и использующих анализ данных и принятие решений в своих исследованиях, – бизнес-информатикам, экономистам, финансовым аналитикам, политологам и т.д.
В монографии на единой методической основе проанализированы неопределенности, связанные с выделением информативных признаков и формированием представлений изображений. Книга будет полезна: разработчикам новых алгоритмов и систем анализа и распознавания изображений; студентам, бакалаврам и магистрам, обучающимся по специальностям «Прикладная математика и информатика», «Информационные системы», «Интеллектуальный анализ данных» и близким к ним; всем, кто работает в области обработки и анализа изображений или интересуется этими задачами. Издание осуществлено при поддержке Российского фонда фундаментальных исследований по проекту 11-07-07020, не подлежит продаже