This series provides the chemical physics field with a forum for critical, authoritative evaluations of advances in every area of the discipline. Volume 131 includes chapters on: Polyelectrolyte Dynamics; Hydrodynamics and Slip at the Liquid-Solid Interface; Structure of Ionic Liquids and Ionic Liquid Compounds: Are Ionic Liquids Genuine Liquids in the Conventional Sense?; Chemical Reactions at Very High Pressure; Classical Description of Nonadiabatic Quantum Dynamics; and Non-Born Oppenheimer Variational Calculations of Atoms and Molecules with Explicitly Correlated Gaussian Basis Functions.
This series provides the chemical physics field with a forum for critical, authoritative evaluations of advances in every area of the discipline. Volume 129 in the series continues to report recent advances with significant, up-to-date chapters by internationally recognized researchers.
Recent advances from internationally recognized researchers Advances in Chemical Physics is the only series of volumes available to represent the cutting edge of research in the discipline. It creates a forum for critical, authoritative evaluations of advances in every area of the chemical physics field. Volume 128 continues to report recent developments with significant, up-to-date chapters by internationally recognized researchers. Volume 128 includes: «Nucleation in Polymer Crystallization,» by M. Muthukumar; «Theory of Constrained Brownian Motion,» by David C. Morse; «Superparamagnetism and Spin-glass Dynamics of Interacting Magnetic Nanoparticle Systems,» by Petra E. Jönnson; «Wavepacket Theory of Photodissociation and Reactive Scattering,» by Gabriel G. Balint-Kurti; and «The Momentum Density Perspective of the Electronic Structure of Atoms and Molecules,» by Ajit J. Thakkar. Students and professionals in chemical physics and physical chemistry, as well as those working in the chemical, pharmaceutical, and polymer industries, will find Advances in Chemical Physics, Volume 128 to be an indispensable survey of the field.
This series provides the chemical physics field with a forum for critical, authoritative evaluations of advances in every area of the discipline.
This series provides the chemical physics field with a forum for critical, authoritative evaluations of advances in every area of the discipline.
This series provides the chemical physics field with a forum for critical, authoritative evaluations of advances in every area of the discipline. This stand-alone special topics volume reports recent advances in electron-transfer research with significant, up-to-date chapters by internationally recognized researchers.
The Advances in Chemical Physics series provides the chemical physics field with a forum for critical, authoritative evaluations of advances in every area of the discipline. This special volume focuses on atoms and photos near meso- and nanobodies, an important area of nontechnology. Nanoscale particles are those between 1 and 100 nm, and they obey neither the laws of quantum physics nor of classical physics due to an extensive delocalization of the valence electrons, which can vary depending on size. This means that different physical properties can be obtained from the same atoms or molecules existing in a nanoscale particle size due entirely to differing sizes and shapes. Nanostructured materials have unique optical, magnetic, and electronic properties depending on the size and shape of the nanomaterials. A great deal of interest has surfaced in this arena as of late due to the potential technological applications.
Advances in Chemical Physics is the only series of references available that explores the cutting edge of research in chemical physics. This series provides the chemical physics field with a forum for critical, authoritative evaluations of advances in every area of the discipline.