A classic text and standard reference for a generation, this volume and its companion are the work of an expert algebraist who taught at Yale for more than three decades. Nathan Jacobson's books possess a conceptual and theoretical orientation; in addition to their value as classroom texts, they serve as valuable references.Volume II comprises all of the subjects usually covered in a first-year graduate course in algebra. Topics include categories, universal algebra, modules, basic structure theory of rings, classical representation theory of finite groups, elements of homological algebra with applications, commutative ideal theory, and formally real fields. In addition to the immediate introduction and constant use of categories and functors, it revisits many topics from Volume I with greater depth and sophistication. Exercises appear throughout the text, along with insightful, carefully explained proofs.
A classic text and standard reference for a generation, this volume and its companion are the work of an expert algebraist who taught at Yale for two decades. Nathan Jacobson's books possess a conceptual and theoretical orientation, and in addition to their value as classroom texts, they serve as valuable references.Volume I explores all of the topics typically covered in undergraduate courses, including the rudiments of set theory, group theory, rings, modules, Galois theory, polynomials, linear algebra, and associative algebra. Its comprehensive treatment extends to such rigorous topics as Lie and Jordan algebras, lattices, and Boolean algebras. Exercises appear throughout the text, along with insightful, carefully explained proofs. Volume II comprises all subjects customary to a first-year graduate course in algebra, and it revisits many topics from Volume I with greater depth and sophistication.