In this ready reference, top academic researchers, industry players and government officers join forces to develop commercial concepts for the transition from current nuclear or fossil fuel-based energy to renewable energy systems within a limited time span. They take into account the latest science and technology, including an analysis of the feasibility and impact on the environment, economy and society. In so doing, they discuss such complex topics as electrical and gas grids, fossil power plants and energy storage technologies. The contributions also include robust, conceivable and breakthrough technologies that will be viable and implementable by 2020.
This ready reference is unique in collating in one scientifically precise and comprehensive handbook the widespread data on what is feasible and realistic in modern fuel cell technology. Edited by one of the leading scientists in this exciting area, the short, uniformly written chapters provide economic data for cost considerations and a full overview of demonstration data, covering such topics as fuel cells for transportation, fuel provision, codes and standards. The result is highly reliable facts and figures for engineers, researchers and decision makers working in the field of fuel cells.
Covering the various aspects of this fast-evolving field, this comprehensive book includes the fundamentals and a comparison of current applications, while focusing on the latest, novel achievements and future directions. The introductory chapters explore the thermodynamic and electrochemical processes to better understand how electrolysis cells work, and how these can be combined to build large electrolysis modules. The book then goes on to discuss the electrolysis process and the characteristics, advantages, drawbacks, and challenges of the main existing electrolysis technologies. Current manufacturers and the main features of commercially available electrolyzers are extensively reviewed. The final chapters then present the possible configurations for integrating water electrolysis units with renewable energy sources in both autonomous and grid-connected systems, and comment on some relevant demonstration projects. Written by an internationally renowned team from academia and industry, the result is an invaluable review of the field and a discussion of known limitations and future perspectives.
Authored by 50 top academic, government and industry researchers, this handbook explores mature, evolving technologies for a clean, economically viable alternative to non-renewable energy. In so doing, it also discusses such broader topics as the environmental impact, education, safety and regulatory developments. The text is all-encompassing, covering a wide range that includes hydrogen as an energy carrier, hydrogen for storage of renewable energy, and incorporating hydrogen technologies into existing technologies.