Кто изобрел современную физику? От маятника Галилея до квантовой гравитации. Геннадий Горелик

Читать онлайн.
Название Кто изобрел современную физику? От маятника Галилея до квантовой гравитации
Автор произведения Геннадий Горелик
Жанр История
Серия
Издательство История
Год выпуска 2013
isbn 978-5-17-080251-7



Скачать книгу

по крутой параболе – на землю поблизости от башни. А если скорость очень велика, парабола станет очень пологой, и шар улетит очень далеко от Земли.

      Спрашивается, с какой скоростью надо бросить шар, чтобы, свободно падая, он оставался на той же высоте от земной поверхности, уходящей закругленно “вниз”?

      На этот вопрос ныне может ответить и школьник, нарисовав указанную схему, применив теорему Пифагора и учтя, что радиус Земли R ≈ 6000 км, а ускорение свободного падения g ≈ 10 м/сек2. Эти величины, как и теорему Пифагора, знал также и Галилей. И мог получить, что искомая скорость связана с g и R соотношением

      V2= gR

      и равна примерно 8 км/сек. Летя с такой скоростью, шар оставался бы на постоянном удалении от земной поверхности. Совсем как Луна.

      Однако Галилей легко обнаружил бы, что лунные величины Rл ≈ 400 000 км и Vл ≈ 1 км/сек никак не укладываются в полученное соотношение. А чтобы уложились, нужно значение gл, примерно в 3600 раз меньшее измеренного Галилеем на поверхности Земли. Расстояние до Луны больше радиуса Земли примерно в 60 раз, а 60 60 = 3600. Отсюда Галилей мог предположить, что ускорение свободного падения g меняется с удалением от Земли обратно пропорционально квадрату расстояния R:

      g ~ 1/ R 2.

      Отсюда, с учетом предыдущего соотношения, следует, что скорость спутника меняется с расстоянием R от небесного тела:

      V ~ 1/ R 1/2.

      А если небесное тело имеет несколько спутников, то для них всех величина VR 1/2 одна и та же.

      Подтвердить это свойство Галилей мог на им же открытых спутниках Юпитера:

      Подтвердили бы это и спутники Солнца, то есть планеты (орбиты которых близки к круговым).

      Так закон свободного падения, установленный в земных физических опытах, поднялся бы до астрономических высот. И так Галилей пришел бы к новому закону природы, который мог назвать общим законом свободного падения: ускорение свободного падения на расстоянии R от центра небесного тела

      g(R) = A/R 2,

      где А – некая константа, определяемая свойствами небесного тела.

      Из наблюдательных данных Галилей мог вычислить соотношения таких констант для Земли, Юпитера и Солнца:

      AЮпитера ≈ 300 AЗемли,

      AСолнца ≈ 300 000 AЗемли.

      Глядя на эти три величины, характеризующие Землю, Юпитер и Солнце, естественно было спросить, какие различия небесных тел ведут к различиям их констант A. Из явных различий в размере, в количестве вещества (массе) и в состоянии светимости легче всего предположить, что величина A пропорциональна массе небесного тела M: A = GM с неким коэффициентом G (который тоже можно грубо оценить, считая среднюю плотность Земли близкой к плотности ее твердых пород).

      В результате Галилей получил бы общую зависимость сразу для всех трех небесных тех – Земли, Юпитера и Солнца:

      g (R) = GM/R 2,

      и здесь константа G – не простая,