Название | Коллоидная химия. Шпаргалка |
---|---|
Автор произведения | Е. С. Мухачева |
Жанр | Химия |
Серия | |
Издательство | Химия |
Год выпуска | 2009 |
isbn |
Дж. Рэлеем был рассмотрен простейший случай рассеяния света при следующих условиях:
1) малой концентрации дисперсной системы;
2) малом размере частиц (отношение длины волны падающего света formula к радиусу частицы r не менее 10);
3) изометричной форме частиц.
8. Поглощение света дисперсными системами, уравнение Бугера-Ламберта-Бера. Определение размеров коллоидных частиц
Уравнение Рэлея справедливо для монодисперсных разбавленных коллоидных растворов при размерах частиц дисперсной фазы r < 40–70 нм. Более общие выводы о рассеянии света, справедливые для систем всех степеней дисперсности, сформулированы в теории Г. Ми. В данной теории учитывается, что при больших размерах частиц картина рассеяния света осложняется возникающими электрическими и магнитными полями. Максимум рассеяния согласно Г. Ми имеет место при размерах частиц около 0,25λ, где λ – длина волны видимой части спектра.
Явления рассеяния и поглощения света связаны также с такими свойствами, как окраска растворов, концентрация растворенного вещества. Поглощение света имеет избирательный характер. Поглощение света для молекулярных растворов определяется по уравнению Бугера-Ламберта-Бера:
I = I0 e — kcδ,
где I и I0 – интенсивность падающего света и света, прошедшего через раствор; k – коэффициент поглощения, зависящий от природы растворенного вещества и длины волны; c – концентрация поглощенного вещества; d – толщина слоя раствора.
Из данного уравнения можно вывести соответствующие уравнения для определения относительной прозрачности и относительного поглощения:
I / I0= e — kcδ;
(I0 – I) / I0 = 1 – e — kcδ.
Для коллоидных растворов в уравнение Бугера-Ламберта-Бера вносят поправку, которая необходима для учета рассеяния света. Количество рассеянного света эквивалентно дополнительному количеству поглощенного света. В связи с этим приведем модифицированную формулу, в которой учитывается явление светорассеяния:
где v – объем коллоидной частицы.
Из последнего уравнения можно вывести формулу для расчета размеров коллоидной частицы. Предположим, что частица имеет правильную сферическую форму.
Тогда радиус этой частицы будет определяться так:
Эмпирически радиус частицы