Название | Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали |
---|---|
Автор произведения | Скотт Бембенек |
Жанр | Физика |
Серия | Удивительная Вселенная |
Издательство | Физика |
Год выпуска | 2017 |
isbn | 978-5-17-119799-5 |
В 1583 году во время мессы в Соборе Пизы Галилео наблюдал, как под воздействием ветра качается светильник. Глядя на него, Галилео понял, что без дополнительного приложения сил постоянные колебания становятся все слабее и слабее[5]. Но сколько нужно времени, чтобы прошло каждое из этих колебаний? Используя свой пульс для измерения времени (точные часы еще не изобрели), он удивился, когда осознал, что, хотя амплитуда каждого колебания уменьшалась, затрачиваемое на каждое колебание время оставалось неизменным. Галилео был заинтригован.
Рис. 2.1. Маятник сдвигают направо из точки покоя (нижнее положение, в котором он, по сути, висит вертикально) до начальной точки (амплитуда). Как только его отпускают, он качается влево, проходя через точку покоя (где его скорость теперь является максимальной) до противоположной стороны, где он достигает конечной высоты (которая соответствует начальной). Когда начальная высота мала, время, которое уходит на один такой цикл, зависит только от длины веревки.
Хотя неизвестно, правдива ли эта история[6], первые заметки Галилео о качающемся маятнике (рис. 2.1) – хорошей модели качающегося канделябра – появились в конце 1588 – начале 1589 года, хотя к самим экспериментам[7] он приступил только в 1602 году. Основываясь на своих опытах, Галилео заключил, что время, требуемое на колебание маятника (период), не зависит от размера колебания (амплитуды); и также не зависит от массы[8] в конечной точке. Единственное, от чего оно зависит, – длина веревки. Это означает, что если привести маятник в движение на высоте или на «маленькой»[9] амплитуде вне зависимости от начальной высоты, время, за которое маятник пройдет траекторию от начальной точки и обратно (колебание), всегда будет постоянным (учитывая колебание воздуха и внутреннее трение).
В «Диалоге о двух главнейших системах мира» [10]Галилео рассуждает об этом с точки зрения протагониста, Сальвиати:
«Соответственно, я взял два шара – один из свинца, один из пробки, – причем первый был в сто раз тяжелее второго, и подвесил их с помощью двух одинаковых, равных по размеру нитей около 4–5 локтей в длину. Запустив их движение (одновременно) как маятники, я увидел, что два эти тела совершали колебание по одному и тому же пути, и периоды легкого и тяжелого шара практически совпадали. Это свободное колебание повторялось сотни раз».
Это наблюдение точное лишь отчасти. Возможно, эксперименты Галилео с маятниками относились только к малым колебаниям – или часы, которыми он пользовался, были недостаточно точными. Справедливо, что период колебания маятника зависит от длины нити, а не от массы груза, однако если размах колебания станет достаточно большим, период будет также зависеть от амплитуды
5
В данном случае размер каждого колебания становится меньше из-за трения о воздух и внутреннего трения, например между веревкой и точкой опоры. Идеальный маятник не потерял бы энергию из-за трения, и каждое колебание не отличалось бы от предыдущего.
6
Более вероятно, что Галилео заметил этот тип движения, помогая отцу в его экспериментах с использованием натяжения музыкальных струн в 1588–1589 годах. Позже он вспомнил, что раньше видел такие же движения – покачивания люстры собора, хотя и не задумывался о физических принципах качания. Именно это говорит его персонаж Сагредо в «Диалоге о двух системах мира»:
«Тысячу раз я обращал внимание на колебания, в особенности на колебания ламп в некоторых церквях, висящих на длинных шнурах, случайно приведенных кем-то в движение. Большая часть моих наблюдений приводила меня к мысли о неправдоподобии мнения многих, считающих, что движения этого типа поддерживает среда, то есть воздух. Мне казалось, что воздух должен отличаться совершенной рассудительностью, и ему должно быть нечем заняться, чтобы проводить часы, с определенной периодичностью толкая объект туда-сюда».
Рассматриваемые эксперименты включали бы следующее: груз подвешивают на струне, ее щиплют и отмечают издаваемые ей звуки. Очевидно, незначительные покачивания груза были бы следствием таких экспериментов.
7
Этот эксперимент достаточно просто провести дома. Если у вас не получится повторить результаты Галилео, наиболее вероятная ваша ошибка может быть в том, что вы перемещаете маятник слишком часто или слишком сильно, вы даете ему небольшой толчок, прежде чем снова позволите ему двигаться. Веревка не достаточно натянута во время колебания или слишком толстая, что вызывает внутреннее трение.
8
Не путайте массу и вес. Вес – просто мера силы тяжести, действующей на массу объекта. Таким образом, в то время как вес может измениться, масса объекта не изменится при обычных обстоятельствах. Например, ваш вес на Луне будет меньше, чем на Земле, так как сила тяготения на Земле, воздействующая на вашу массу, больше, чем на Луне. Однако ваша масса и на Луне, и на Земле одинакова.
9
Это следует из математики решения уравнения движения маятника. А именно связано с приближенным значением, которое можно получить, когда амплитуда – которую измеряют как угол отклонения по вертикали – мала. Приближение заключается в том, что синус угла считают как сам угол (когда измеряют его в радианах). Математически мы пишем: sin θ ~ θ, где θ – угол. Это приближение значительно упрощает решение проблемы.
10
До середины 1609 года Галилео уделял науке о движении особое внимание. Затем Галилео узнал о подзорной трубе (предшественнике телескопа), созданной голландским изобретателем в 1608 году, и построил свою собственную, улучшенную версию. Проблема движения вновь привлекла его внимание в 1633 году, когда он начал работать над «Диалогами о двух системах мира». В них он излагает результаты своих исследований сопротивления материалов и движения объектов. Галилео рассматривал «Диалоги» как лучшую из всех своих работ, наследие почти тридцати лет его исследований.