Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали. Скотт Бембенек

Читать онлайн.



Скачать книгу

Герман фон Гельмгольц (1821–1894) начал изучение сохранения энергии с попытки доказать, что тепло тела и мышечное движение, производимое животными, непосредственно связаны с энергией, сохраненной в еде. Гельмгольц твердо полагал, что энергия преобразуется из одной формы в другую, никогда не будучи создана или разрушена. Действительно, Гельмгольц придумал фразу «принцип сохранения энергии» и продолжил строить полную математическую формулировку, исходя из сохранения энергии в приложении к механике, теплу, электричеству, магнетизму, химии и астрономии, чего Майер так и не смог постичь, а Джоуль никогда и не пробовал.

      Слепой приверженец формул, он применял их ко множеству физических явлений. В частности, он утверждал, что потеря части кинетической энергии в неупругих столкновениях происходит из-за теплообразования, а оставшаяся часть – из-за деформации сталкивающихся объектов. Для Гельмгольца деформация была результатом увеличения «силы натяжения». Этот формализм очень похож на утверждение Иоганна Бернулли о том, что кинетическая энергия, или vis viva, потерянная в неупругих столкновениях, сохранилась, сжав «крошечные пружины», из которых, как он предполагал, состоял объект.

      Фундаментально и Гельмгольц, и Бернулли были правы, и сегодня мы понимаем деформацию как изменение потенциальной энергии, сохраненной в объекте. Однако Гельмгольц (правильно) понимал теплообразование во время неупругого столкновения, и это отличало его работы от работ Бернулли и пролило свет на природу тепла вне его механического эквивалента работы.

      Черпая идеи из ранних работ Джоуля, Гельмгольц продолжал применять принцип сохранения к тепловым и электрическим явлениям. Он отвергал теплородную теорию и считал, что тепло – результат движения частиц материи. Для Гельмгольца тепло и механические явления были явно связаны, как и все другие формы энергии, его математической парадигмой – первым началом, которое он твердо вывел приблизительно в 1850 году, обеспечив физическую теорию новой объединяющей основой.

      Энергия-хамелеон

      Наше начальное понимание энергии пришло из экспериментальных наблюдений, проводимых Галилео в XVI и XVII веках. Однако к концу XVII века математика была мощным научным инструментом, что доказывают «Начала» Ньютона, изданные в 1687 году. Тем не менее понимание энергии в целом пришло только в XIX веке.

      Тепло было, возможно, самым большим препятствием на пути понимания энергии, оставаясь не связанным с ней приблизительно до 1850 года, когда было сформулировано первое начало (закон сохранения энергии, или первый закон термодинамики). До тех пор тепло считали своего рода жидкостью, которая могла проходить внутрь и наружу по крошечным пространствам, которые предположительно существовали в веществе. Это вещество называли теплородом и в течение долгого времени тепло воспринимали отдельно от остальных форм энергии. Однако, в то время как развивалось наше понимание вещества, также развивалось и наше понимание тепла, и наконец