Название | Виртуальный ты. Как создание цифровых близнецов изменит будущее человечества |
---|---|
Автор произведения | Питер Ковени |
Жанр | |
Серия | Научный интерес |
Издательство | |
Год выпуска | 2023 |
isbn | 978-5-389-27574-4 |
Оптимизм в отношении потенциала цифровых двойников в медицине подкрепляется нашей нынешней способностью прогнозировать погоду, которая поразила бы Эббе. Мы воспринимаем ежедневные прогнозы как нечто само собой разумеющееся, но этот подвиг на стезе предсказания поистине выдающийся. Маркус Коверт из Стэнфордского университета, разработавший виртуальные клетки, заметил: «Прогнозирование таких бедствий, как ураган «Сэнди», за десять дней до выхода на берег – с соответствующей эвакуацией сотен жителей, спасающей как жизни, так и имущество, – возможно, стоит причислить к величайшим техническим триумфам в истории человечества»[12].
Что касается прогнозов климата, разрабатываются планы по созданию «цифрового двойника» Земли, который будет моделировать атмосферу, океан, ледники и сушу с разрешением в 1 км, предоставляя прогнозы рисков наводнений, засух и пожаров, а также океанских вихрей, которые перемещают тепло и углерод по планете. Эта европейская модель (Destination Earth) объединит другие данные, такие как использование энергии, структуру дорожного движения и перемещения людей (отслеживаемые с помощью мобильных телефонов), чтобы показать, как изменение климата повлияет на общество и как общество может изменить его траекторию во времени, которое некоторые уже называют антропоценом – геологической эпохой, когда человеческая деятельность оказывает значительное влияние на нашу планету[13].
Подробности создания цифрового двойника планеты Земля ошеломляют. Возьмем, к примеру, облака. Они состоят из воды, которая также является основным компонентом человеческого тела (около 68 %)[14]. Однако, в отличие от нас, облака кажутся простыми – огромные шлейфы капель воды или кристаллов льда, плывущие по небу. Их формирование имеет решающее значение для нашей способности предсказывать погоду, важно для нашего понимания последствий глобального потепления и занимает центральное место в спорных схемах сдерживания изменения климата с помощью геоинженерии[15].
От пучков кучевых облаков причудливых форм до огромных серых пластов – облака являются прекрасным примером того, как сложность может возникнуть из простоты – капель воды, переносимых воздушными потоками в результате конвекции. Когда эти капли конденсируются внутри облаков, выделяется немного тепла, что поддерживает облака в воздухе. На больших высотах, где температура падает значительно ниже нуля, капли превращаются в кристаллы льда, придавая облакам тонкий, перистый вид.
Внутри облака процессы наименьшего масштаба управляют образованием капель. Но, хотя эти особенности и взаимодействия микроскопичны, они имеют крупномасштабные макроскопические эффекты. Чем меньше и многочисленнее капельки, тем сильнее рассеивается свет. На уровне микрометров турбулентность ускоряет образование облаков и вызывает ливни[16]. Крупномасштабные
12
Alley, R. B., Emanuel, K. A. & Zhang, F. Advances in weather prediction. Science 363, 342–344 (2019).
13
European Commission. Shaping Europe’s digital future: Destination Earth. https:// digital-strategy.ec.europa.eu/en/policies/destination-earth (accessed May 29, 2022).
14
Mitchell, H. H., Hamilton, T. S., Steggerda, F. R. & Bean, H. W. The chemical composition of the adult human body and its bearing on the biochemistry of growth. J. Biol. Chem. 158, 625–637 (1945).
15
Proctor, J., Hsiang, S., Burney, J., Burke, M. & Schlenker, W. Estimating global agricultural effects of geoengineering using volcanic eruptions. Nature (2018). https://doi.org/10.1038/s41586-018-0417-3.
16
Dallas, V. & Vassilicos, J. C. Rapid growth of cloud droplets by turbulence. Phys. Rev. E— Stat. Nonlinear, Soft Matter Phys. (2011). https://doi.org/10.1103/PhysRevE.84.046315.