Название | Живи долго! Научный подход к долгой молодости и здоровью |
---|---|
Автор произведения | Майкл Грегер |
Жанр | |
Серия | New Med |
Издательство | |
Год выпуска | 2023 |
isbn | 978-5-4461-2235-6 |
Как прооксиданты могут оказывать антиоксидантное действие
Парадоксально, но факт: активизация антиоксидантных и репарационных защитных сил ДНК, по-видимому, является следствием мягкого прооксидантного действия зеленого чая, и это явление можно сравнить с тренировками[1650]. Его называют «парадоксальным окислительным стрессом, вызванным физической нагрузкой»[1651]. Ультрамарафонцы во время забега могут генерировать такое количество свободных радикалов, что те способны повредить ДНК значительной части собственных клеток[1652]. Почему, казалось бы, полезное действие (физическая нагрузка) может привести к пагубным последствиям? Потому что упражнения сами по себе не всегда являются полезными для здоровья, важен лишь период восстановления после них[1653]. Например, выяснилось, что тренировки усиливают антиоксидантную защиту организма за счет повышения активности антиоксидантных ферментов. Таким образом, спортсмены могут получить удар по ДНК во время забега, но через неделю они не просто возвращаются к исходному уровню повреждения ДНК – оно снижается, предположительно потому, что предшествующая нагрузка активизировала антиоксидантную защиту[1654].
Таким образом, легкий окислительный стресс, вызываемый зеленым чаем и физическими упражнениями, можно рассматривать как благотворное воздействие, аналогичное вакцинации. Бросив организму небольшой вызов, мы можем вызвать ответную реакцию, благоприятную в долгосрочной перспективе. Концепция, согласно которой низкие уровни повреждающего воздействия могут стимулировать защитные механизмы – «то, что не убивает нас, делает нас сильнее», – известна как гормезис[1655] (см. с. 562).
Прием антиоксидантов, таких как витамин С и витамин Е, может блокировать активность антиоксидантных ферментов, вызванную физической нагрузкой, и тем самым снижать полезное действие тренировок; употребление богатых антиоксидантами продуктов питания – лучший выбор[1656]. В то время как добавки витамина С, по-видимому, снижают физическую выносливость[1657], фрукты[1658] и овощи[1659] обладают эргогенными свойствами, повышая работоспособность без ущерба для защитной адаптационной реакции[1660]. Более того, фрукты и овощи могут даже усиливать пользу от тренировок. Было показано, что черная смородина[1661] и лимонная вербена[1662] – богатый антиоксидантами травяной чай – защищают от окислительного стресса, вызванного физической нагрузкой, и в то же время улучшают адаптацию к нагрузке.
Учитывая эффект гормезиса, возникающий в результате мягких прооксидантных нагрузок, таких как зеленый чай и физическая активность, необходимо слишком упрощенное представление: «антиоксиданты – хорошо, свободные радикалы – плохо»
1649
Dias TR, Alves MG, Tomás GD, Socorro S, Silva BM, Oliveira PF. White tea as a promising antioxidant medium additive for sperm storage at room temperature: a comparative study with green tea. J Agric Food Chem. 2014;62(3):608–17. https://pubmed.ncbi.nlm.nih.gov/24372402/
1650
Choi SW, Yeung VTF, Collins AR, Benzie IFF. Redox-linked effects of green tea on DNA damage and repair, and influence of microsatellite polymorphism in HMOX-1: results of a human intervention trial. Mutagenesis. 2015;30(1):129–37. https://pubmed.ncbi.nlm.nih.gov/25527735/
1651
Leaf DA, Kleinman MT, Hamilton M, Deitrick RW. The exercise-induced oxidative stress paradox: the effects of physical exercise training. Am J Med Sci. 1999;317(5):295–300. https://pubmed.ncbi.nlm.nih.gov/10334116/
1652
Mastaloudis A, Yu TW, O’Donnell RP, Frei B, Dashwood RH, Traber MG. Endurance exercise results in DNA damage as detected by the comet assay. Free Radic Biol Med. 2004;36(8):966–75. https://pubmed.ncbi.nlm.nih.gov/15059637/
1653
Vollaard NBJ, Shearman JP, Cooper CE. Exercise-induced oxidative stress: myths, realities and physiological relevance. Sports Med. 2005;35(12):1045–62. https://pubmed.ncbi.nlm.nih.gov/16336008/
1654
Mastaloudis A, Yu TW, O’Donnell RP, Frei B, Dashwood RH, Traber MG. Endurance exercise results in DNA damage as detected by the comet assay. Free Radic Biol Med. 2004;36(8):966–75. https://pubmed.ncbi.nlm.nih.gov/15059637/
1655
Fisher-Wellman K, Bloomer RJ. Acute exercise and oxidative stress: a 30 year history. Dyn Med. 2009;8:1. https://pubmed.ncbi.nlm.nih.gov/19144121/
1656
Ristow M, Zarse K, Oberbach A, et al. Antioxidants prevent health-promoting effects of physical exercise in humans. Proc Natl Acad Sci U S A. 2009;106(21):8665–70. https://pubmed.ncbi.nlm.nih.gov/19433800/
1657
Braakhuis AJ. Effect of vitamin C supplements on physical performance. Curr Sports Med Rep. 2012;11(4):180–4. https://pubmed.ncbi.nlm.nih.gov/22777327/
1658
Kashi DS, Shabir A, Da Boit M, Bailey SJ, Higgins MF. The efficacy of administering fruit-derived polyphenols to improve health biomarkers, exercise performance and related physiological responses. Nutrients. 2019;11(10):E2389. https://pubmed.ncbi.nlm.nih.gov/31591287/
1659
Van der Avoort CMT, Van Loon LJC, Hopman MTE, Verdijk LB. Increasing vegetable intake to obtain the health promoting and ergogenic effects of dietary nitrate. Eur J Clin Nutr. 2018;72(11):1485–9. https://pubmed.ncbi.nlm.nih.gov/29559721/
1660
Trapp D, Knez W, Sinclair W. Could a vegetarian diet reduce exercise-induced oxidative stress? A review of the literature. J Sports Sci. 2010;28(12):1261–8. https://pubmed.ncbi.nlm.nih.gov/20845212/
1661
Lyall KA, Hurst SM, Cooney J, et al. Short-term blackcurrant extract consumption modulates exercise-induced oxidative stress and lipopolysaccharide-stimulated inflammatory responses. Am J Physiol Regul Integr Comp Physiol. 2009;297(1):R70–81. https://pubmed.ncbi.nlm.nih.gov/19403859/
1662
Funes L, Carrera-Quintanar L, Cerdán-Calero M, et al. Effect of lemon verbena supplementation on muscular damage markers, proinflammatory cytokines release and neutrophils’ oxidative stress in chronic exercise. Eur J Appl Physiol. 2011;111(4):695–705. https://pubmed.ncbi.nlm.nih.gov/20967458/