Исследование социально-экономических и политических процессов. Практикум. Олег Михайлович Рой

Читать онлайн.



Скачать книгу

социологическая мысль. – М., 1994. С. 273

      17

      Сахель: уроки одной экологической катастрофы: научно-аналитический обзор. – М.: ИНИОН, 1992

      18

      Парсонс Т. О социальных системах: Пер. с англ. – М.: Академический проект, 2002. С. 31

      19

      Юдин Э. Г. Системный подход и принцип деятельности // Методологические проблемы современной науки. – М.: Наука, 1978. С. 142–145

      20

      Василькова В. В. Порядок из хаоса в развитии социальных систем. – СПб.: Лань, 1999. С. 141

iVBORw0KGgoAAAANSUhEUgAAAZ0AAAE+CAMAAABhiT3QAAAACXBIWXMAAA7EAAAOxAGVKw4bAAABd1BMVEUAAAAaFxsbGBwcGR0cGh0dGh0dGh4eGx8fHSAgHSEgHiEhHiIhHyIiICMjICMjICQlIyYpJykpJyoqJyoqKCoqKCssKiwsKi0uLC4uLC8wLzEyMDMyMTM1MzU2NTc3NTc4Njg6ODo7Ojw8Ojw8Oz09Oz09PD4/PkBAPkBAP0FBP0FDQkREQkREQ0VIR0hKSEpMS01OTU5OTU9PTlBQTlBSUVJTUlNUU1VVVFVWVVZYV1haWVpeXV5fXl9jYmNjY2RkZGVoZ2hqaWpsa2xsa21ubG5wb3BxcHF1dHV5eHl6eXp9fX6BgIGFhYWGhYaIh4iKiouLi4yMi4yMjIyNjY2SkZKWlZaXl5ebm5ydm52dnJ2joqOjo6OpqKmvrq+xsbGysrKzsrS0s7S1tbW3t7i6urq+vr7BwcHDw8PFxcXIyMnJycnLysvLy8vMzM3Q0NDS0tLU09TX19fa2trc29zc3Nzi4uLk4+Tl5eXs7Ozt7e329vb////ds8RxAAAAAWJLR0QAiAUdSAAAJtdJREFUeNrtnW1/JDt61nMFCFmSCQMnOZzwEJ60wUuAEGBR4mXZCIdwbrycgjCrHVJYwE40RpvFtbSW1o50fXheVHV3VXW33bbbds8Z6UX/ZtpdVZL+0v0k1a1fYC2nW36hdkGlU8uR6RSbyCASaiedHp2sEZnRdci1l06OTokmsqgQVKm9dIJ6RyLpAV876UTpFBM7U8joannCkh9GxwspfqBjde3HJyk6PoxOgmuRhv9HqaLmSYo8hE7IZLTt+tJK55TozEulU+lUOpVOpbMpriVbqEAyG+gafDglOhbCpIu3JK0rtkbuTmruRKEzVhJJacXW0NDJ0dHJaJJifY0NnRwdLwzoayKuAjkxOhleCYXONKh656To5EBG5woV6d2nCyc3iVnQFJKtUoFB6XQ6/s6nPWuSQmTjUhPJpIqVjOzNCdDJ3lcvh5RI1YojWVJqfRQSL0/nPYDX7ysdiYT1veJtVToNOhkA8DpVOpE6UjsyByYVDcsT0CkipBZpSbYiurlD3QAA0D5fN5QmMYlIIpOISApKhZOgYxuLGNqkOq+L8rY5Pp1g+jk5FHOHTvHPTkch0q/9qmQyUlQvTydklrYJDA27pk1Mti1PINmiMCut+va7O9zL+B8AAL+cnneUOrMKGkmKhsTpSNYwCmYBAI5Op8SSQZIFtwbOOoH899fAL//1Z6bT+dx4kgwNo5CIJ6mLHkgnFTKPNozM6MSmFJBkd5vWCRo2ktm5JLo8K52QhlndBCZF4hken0xkAPqBULSjU3eFRh5Ep1hEFmWNyvskm9EtEdm6W9ms6RbVPK/+VUGH1JIqk7q1z7B4mBsVN4K+gcsot+u7Eh5EJzod6Q2Lz3ss6hwjKZmHsSGZ8Hzxz5BZnAtMDelIZufKc40Ko5rSm04uyq1zNjulHijZJNKJQduDiNHvGnw7dEmJsexgQ9Kje/boyTOHKCQyhCyezDoNdPbp22ShXXkEHV0sOjKIiJgddJIL85Hx/jO8+vz9DjYkrfq6x3Mk0vX6zgHA/9Ys2GstmbC65mF0GtK4/bGCr74BfJ52xAV+aRcbshjzzAujuG1oPg2dRjkVQ0tSHI1tdmnb4jWauLnmQXSCyknt3wv6/hsA8M2JurJ9f/zZnsms7InQKYlMMaZex+bh4/GStLB4F3tDNmUW57fHY26VGo3eB9FpE9lCtfvjbF8CAH7NiIgYTMq+1enumdfe9tFJZhOL6pRTuVPumJuFYtlfGws9MVGeKAraE/lV65xzLsYYYyzxG7dHPN3zuuz76EQrJHIkycazdU24zTU4am1M2BJST0Hnv/wiAHwx00WvgVc/uEVgPqdTGnf3R9+aBKPtyjiVeGdE6nHDosQYdo+VJ6FTGpy/Bj6f37uz9raYSdG73cL0BHPKYSVLVJu3WlNSb1BJpGuehk6O0TvXiAAA1PPRSVpFdu7+a55pHaz2IFdGoTFHj2GXZq3+itNoullroqQMxmJbWm9bij86HQBKxDrXxbhXzj4BHQfZKaFS77uSZA67nc8wOKVJQNLBkYya6chiPxkVp/6FHtlPUViMUo6IWRlTkjqqtd/1INIhWvDodIrsjsoUC9IZEZJUek/oxq6sdJBRt46k0/rIy2NBzXs7W6Vsmkc6bCHznrDHg5+tcQ9H69h0otJpT+AIpAxTB1F2ezdrpxQsKrqeTrFHXR5rYXfFHDVkppuPHr0oTsPml6PT9luydstb0gxCosW+AGAenFIwiWgdyM4MWuhIPWT2zcSVu/xU8YPslNr2a6OQbe9dsVUmFTvqwqPSyeY2GQQyFppIFuWN22vp+uHHpHN0rqgGxwsjpH1zexNreho6ee5prjQtSNPFRDJIts7LyAY5Jp2gzG0SGqQEmphzUMnq253SXgJmet+vRxyp+Fvm9sbYfQLvqoEOe0YjiVY6ktZaWxrPIMenUyzaW00bkBbGFOeKvi0VRaOGlYYjK2Sy2DvWkVZO0NH49HOxE0i3V1aQEoIiKaaDlThSFEegU7763b95xWTUAUs0KZG+I+Mt7S///Ndev/7sCXYg5jur2MMJGsd6kwgAoLG/lxnBEkkVSetoxTr65nh0yrcBvPq3kEMH3J0N/3sA8PqYOzEG788cWsWg1R0LpoO0LTGRZf9Yu3sqRjDDesU2BRNgg46b6NLj6fyob/p/O56M/g0AwJ8enc59JoRTe/k4kK1WhiSVQlfM/jl5t5WRHdmJTWwivbSFfhSYeDydwQ493lAf4pP26HTu6Zvs4ZMEJEoCyYRsm2BGenxXUw6cr0/i77TYIYjyI7R5b9f+hT97WTq38AHJ2I9wq5CdY8QtXfMIC/3xdPJnAPAH7FQk2QhJWv2Ylc73r4Bf+fyY4ZsH9lJxSu/YtwSS2TYki25U2Efndu/vyej0Fl+RYX6kbwGmJFGRDEpIZlUeFbiMP/jy/d6wQ8zPRocsFrvoZJA6kkEVJ8Gwk53RvEe7Aw+g4/vKNphlMZLIpIOQjFrU42PuUalp5YoIszJDHPseewTzI2Zy3jl3jFhTxGWl0RZtt62CtffXBZLFZZLOOReLle4p6aQIkt6YbTomRCEZVbFHiIeUZrqw0xqhb9hvZenU4XT64F5pw7qunYikpA6h1hvjTdhM2UgyxkLbMfcW9dYkWXt/DrIeyc451dmmO3xz2IP0DsikkkROdhtKpIhRLRk1j5PS1U+lQ5Q+GkUya38wnbZflnDakUWvInikhKLTYXRCo2Da2aCPtwSMVt5fskIGM8iZ2FBHNv6p6Rgbjc+T3YYS+w50Qt307sDjg5ZmLCJ7OiqRFH/wC3frzT7OkU3bi2XRlihsDlePsTVAc8iCb2lGASMnzDoPdHQmeI918IfSERG19mn7jkqFZEkMLUsIx1pNdCPjIAqD71XwMEvvpXScYzB99DuEbAJ4z802JVgF3XblVitjqi+dsFECQ5KdIVWkfXI6k0unw/jIL8NEvW5sFEbVmnbwOO6jdAY6MvSqS2ydjrx/xvPk1vvz7h5OPZ0UIzxdPxZsW1R6Ujr9NanspnPssjEOSiKTj6Qe/nO40lkrG4IUinIqtsbtTqld8qaVMWYyTbYIlmFrQIg7zHaZRd9DS5KSqPpdmqW5R76ZjyJ7Xu86jJZ5DnckxjtM86rTDYtzkfQu7RZNbginkS20yk43ZldUFVBi3cpiGzbI7avbQ4z6jyO3YTbqv37+W7/5zXu7d7s9nTtu48SRSYEktS/K6UQTd3i3JQYnBoAR54fw4FE3TH4smSf7kNUX9237w/Y6OceiV9EZjwjeuqMtR9eKeopNCR8XnVf3fAerVQ8KpjjHVmJvBTsVeAedx4aLPn46Q7zrfibWQ19rcI6tCGTFV3fUsdK5xTD4BgD8lXtNhQeH11bGXQSVFglBGcOXKB9NxuM/egX86v2W5B69wTbLWrOw0rm1vP/yyxDus/r8QKUzdmxeOovsR5YtPKmD50P37HksOyFb1e9bszC5PHqb5MeWyz3pkbtXHJlWvncXjqN0Hq4aAWaVrZD0Uqz3zWNfLfnoMu0XsxZYWYHUxiJxtZByRKVz/xLBkpJzJBtrbZFA13xadFhktRJZIkhX+vB8srOXiJ4/b1TEWtuJ8bDDIVKfFB3SrjUKuHmpxMmko14g8XhEn5iQZONopfF09pOjQ7cKWoNMajDjxnSeNS3SmE5S3bCt08MFE3X36dFhwOotH2oTY4lxSudZ397eGCKO7JrVtk5X6B97YO5Hev5Op6SQFFJEJHm3Wkh5MaUzGTyfqL+zx/GZ5jSJX5vTLh5OZ5RF4CXOrspmdyjguZMTnRydTkUWA6xH74ucLFaM+l/fBH5QdtNJkhhU/3J+C3i2UOkToBOAyIAQEB5BJ7UkY0uSpRFbipV75owo3we2U7sMdBIQqRuPjowIFkkVbz6FuUOJjIHU/uF0OsjwQbomKO8l6Vu1aYqZzOPtF3+8vVa8SgdAEpGRCR1ZElvlZW+2uq8fHTKLLqt8Mw+YO/2WXiHJkJIk6ejmkyeLkLnfy9hBoeuUHe2i+X0AwG+O9R/smA7TkEveI7hmnMX8604nqOZRO6ZGdEgtfTqnuQy1MnyQYot2TRhvc/0KAPDX1izt5P1MRIbBeLMqsZPei/8k6ORxcPyRdEIuxu+aO1OEEX6a7il9BgD/rB8kxWHqmCNSG+dyCAmNc0V5aT8VOg4A3DHouGxtanbrnTGdTrWcJeNKX/7+d/9Hb1kHpWab+Fymc85l77NzzjHtyvT4tfV3HumN5jB8mFgasYXtjj2SIzodAjmVbGvLuot6f66E7iM+JvPlYwXukAkGihIJUTWqbFnPf4LDX8evdJ6imqsZN9nQvEpP+LuwrHSegM6BgZd8y8UqMNye/qbSeVo6u36YRjuX77EbpNJ5Sjolds4NyU43FyejUqVzXDrDKSaHHFExvB2jAUCkdSHmCdpyUBalSudgm9qbVaZf6DbfYX/3v3N+f7I2+/U7iPml6GRvoGy3ylfnNMzeV03TBuPttvnEdCubd9VjjDFXOgeWNKCZ3MNC7col3rUauu2mCipnkrls/tPPqPFG3mSERfV5HkREuUrnEL2eWg3d7jo7KRjoSVrTEqyC2X59MChH+uEt86wcG5GGg+nWfue7Lfvg6SZHSvk4Tbpnp7MHzTAN2k3e4ewFGKfYGIkw7Ug3vFIj2hWU0mevSPo3fgV49Ud9pTb5hZqPUyU9O532DsO3s+tE9HZviEzcuuqucS4arl7s/PFfBIDX3ZRO0tUqOJJrU3amot9DJ6Oz9id6TWc4fcL1qSdWee18W+ncXvwjwgL76JTU5xRHXh08G9ZvMEZhnxMSH61gezY6We7Ih/wgOlHYv+Wp9SrhxOcA8Jd/tqpZJht+tOWZ6DjcI5Xc4VvS0kpibTbXpd95/fof/ZtxVsGPy9PxzpNkcS49E51k1suoieukHftym90nErRzmmbS4iPVNB6CQLJRop6FTmnXi2PFgmxNIySL0vBFtU8THgsfadBahNKQbJugH0anNIkMssmgeCudqDcp1rIDiUyVhmNeQrMzp+YRStLq/i9KF997w/nF9iC0qn+JLwP+QXSiQmRC59UBO3WLRTMW/OiTPEWSFijOMT7RPqbR6WGHj1xlVCGzsuqFVluLbayQFBtUeQidHE1/Vq+Od9Lp1ExwbegU5ZTfopONYzFa5yHVtgtKP7Sj/L1XTOELOjK1DC9k6YW2NL5EKhsQH75jyvV2bXTOuR3pbXu7q9kyo0GqXFRO2atkZSsPeqMdvaVtB1ZFxfLgI7Cj0vezOZRpe/ulVS8k2ZKGlKQYFFq+/4d/GJ6QznZ2GZBOG0txWQFu+wwB5yh+pYwkruXgw+TEPRN2By3GkzkX+5I23+Ao/MdXwOuvHkLH9yku90q225KVpUS23XD0xnzhxTlKGO4YDR9HZ88hb0M13Ja12HRFp5zDSezq7V7fcrbxHTt1lWs076JzS+xgr9/q2Lb0liRbTyJTP8Yl6vad6/JHr/Fqno7PQ1s6V4xRLx/7+dPbzgW/hU7IZHKbpZhtOunBr6A5x6icihF9ZNM29nGv3SSjuvSV+WrGqH0FAN/bZUycyP6E/3RbSrrHeKPu4Yn+ciaji8wyHKceHut6DGcZfDadJ9/ZW8OT8GKLH95E+rwcmc4ocPPwko+4AepvAwC+JGOMzrlGZHUmK8SNM+OW9jvfOYUQUG6Vsvn9F3/11/elQn3EScrmxLaWYVS0iHXOxz8BAPwtKwrQ0vpYSH4bwCtz57B2/YmOzj1NO+P68EvjjxxnG0+cVYgzb71U+BJ0/mkc16B8+xvA54lkib4VDSj58pcOOXGuVQ0ySe3kKZZcg2CdhOLYUdDxxClaoSWZoFVOStRLxfJ/8ArAq6t5N/zpj8bjJQb3r4bF9TvsFuNVIaNJ8Xj2w9UX+L0f9+pmtDPpuHSmGieqZBVJr6m9be+R///YKvYr/DZ+eEjoBwB+EdqON5vMFzlKzy/CqqMFcNtXAF79pFVqsu3yqHRmGici9sfwaKV3vhf6jGp2JlaL7atamnEsrl9Y/ebPvGBD6Ef4rdffG19tm6ATGQ3D0V4T/nxQijP79Ih0tky1YmD6kwWtSi9LZ3uWONWQtG1uRuIp/Q7wvX77qBPAtF3ptvwiYzy6nNNxjoAaa8Z/ssPtPxKdbVMte2ZF0grF2faex6k8aXGaTpHU7pYTeKIT4O/0R0KO5E1QkBIcW0wDCum7+OKHD7B8ctcOb1T88RPQGU5n2PZxijLaEbGDRpeUfQmroJjVGw7tNLue9EkNrL99b3z83d4nnJu2fqvf8mcAXn15iAXwnd9fRS6iaxQg7X/+SzuNxePR2bX3NibS5FWajpcw2byKfabvOE15EX0wJE2kvn1G/3CwFCBtSCN30f5oNk2Gc1fvdoF+8ArA5zmH1gDa+kSSP/oWvr2N4mh09o++lxVhg3YoapKiMyhvHIW2ae94r6Q/xvt97pwoQNouc8iU8DsbPCl6948PPLN42Ez5G4C4u94Hf3o6LxwTUUqDZOOmAQ0vrlCxtHfmJC6t+f7QSSm0AihxfxcA8FXevIan5V/3/fAv29v5lP/5NwAAv5d2CeHQm1fxU6ETY2eGSm6ZjA9aJUjBmk1gSKR1Xcwk8+cAXv17t/3yy6YywWrgl3q0W3/t0FlNko36VOgkWOPudU7clJ8f9uiEHU3+F9O+S/+ut9mGlyfK8N3v/aj/q28UlLhIs2ebeFDJzk7UO55FbdG/yQRAsu7zdp5Aia4jDQ8+J25SrDKKZIaehncMdoWGRkIqNID4nD4D8KqNThR00+t/lu8D39oxu4pS6snooGtkdU/bUk5pY/lDLZOmiYqk08VPVrLLH/z63hX/taCyCv9gFRi38/eQhtk4fmeyxJjVU9FpzCAug51nG/poS+oXjgO8mYnutOUfxGGHot9sV4h/v89R9tMdxkp/tqLI5kTwjMa0RDwGHas2+ylWdPpqqfy1odOaVheSDe4M2hQ0qmW/EXotQ/94n07OSIOxmGU6n0wanRX6UDoJpaxrEYWMyEGR/UYaCacUtnlE+MsmFXPOroQ71+SUN45k0HFzxHd8vSNzaT+4MeyYmwPojuLvGGsNR/vZMowSSqJzZDBOfR2yPrWAoXNF67v34rfDBjGN0TbS7lv4/Ic73bCe5R3vTD6YjuvT1W12G0bnC01iyiSDi/w6lJz6PTrpTgs0Ky+WpDPxgO31XiUrjHe9M/lQOtmUst4otnElvn7JUA7do9PBG83IxsRpboQkvfnaiozOddJAf1JmeAo63oz2JEThJ1+KQAVqJo3pm0MiDiSjzma8cz5xk3Xu+HNHGaNypTPvzh0qwFghmUOy4b6z8sF6p4x2uFQ6tzmDGCRde/8zsD/WM0Q+nqJ9Qp/J5/6Z/iudJ6djLFIIQUdX6ZxeNKiRjt7RiU2VzkmWBybFrnRO2gSsdCqdWiqdSqfSqXRqqXQqnVoqnUqn0ql0ajkGnWibrtI5UTpZOUFdGz1ROl5Gb8pWOidGxxmzeeOi0jk1OrpYdGSOMUZf6ZwYHUsaRwYREVPpnBadqLow2UddyylZ1O7QfNS1VG+00ql0Kp1aKp1Kp5ZKp9