Название | Искусство большего. Как математика создала цивилизацию |
---|---|
Автор произведения | Майкл Брукс |
Жанр | |
Серия | Элементы 2.0 |
Издательство | |
Год выпуска | 2021 |
isbn | 978-5-17-148081-3 |
Да Винчи, несомненно, пришлось бы туго в вашей школе. По программе американские школьники должны овладеть дробями к 12–13 годам и научиться, например, расставлять по возрастанию дроби 1/2, 5/9 и 2/7. А вам такое по плечу? Большинству 12- и 13-летних школьников это не под силу.
Вот другой пример: какое из чисел – 1, 2, 19 или 21 – ближе к сумме 12/13 и 7/8? Три четверти 12- и 13-летних американских школьников дают неверный ответ[21]. Самая распространенная ошибка – складывать числители и знаменатели (верхние и нижние числа) по отдельности, то есть обращаться с ними как с натуральными числами. Удивляться здесь нечему, ведь именно этому вас и учили до сих пор. Вместо этого вам нужно либо давать этим числам приблизительную оценку (и 12/13, и 7/8 близки к 1, поэтому их сумма будет близка к 2), либо приводить дроби к общему знаменателю и затем складывать друг с другом скорректированные числители. Стоит задуматься об этом, как дроби сразу кажутся чем-то жутким и беспощадным. Мы уже знаем, что умение работать с натуральными числами далось человечеству большими стараниями, но в случае с дробями все эти навыки приходится отправлять на помойку[22].
Сколько бы сложностей с ними ни возникало, цивилизация за цивилизацией понимала, что дроби стоят того, чтобы над ними попотеть. Вавилоняне осознали это первыми, около 2000 года до нашей эры, а за ними последовали древние египтяне, индусы, греки и китайцы. А это значит, если я не ошибся в расчетах, что вид, который живет на Земле уже 300 тысяч лет, применяет дроби (по очень грубой оценке) на протяжении лишь последней сотой части своего существования. Если вы еще не убедились в том, что даже в базовой математике нет ничего естественного и безусловного, то вот вам доказательство.
Дело в том, что ведение учета невозможно без двух других математических инноваций: отрицательных чисел и понятия нуля. И хотя сегодня они общеприняты и кажутся простыми, обе идеи поначалу вызывали споры, а потому сегодняшнее положение они смогли занять лишь через несколько сотен лет после своего появления.
Странно понимать, что мы тысячелетиями производили вычитание, хотя никто не мог ответить на вопрос “Сколько будет 1 минус 2?”. Но виноват в этом опять же наш мозг. Мы просто не можем представить себе минус одно яблоко, поэтому нам нечего и надеяться на врожденное понимание отрицательных чисел. Они стали еще одним огромным скачком, еще одной концепцией, которую человеку пришлось создать с нуля. Однако, как и дроби, отрицательные числа оказались слишком полезными, чтобы их не изобрести.
История у отрицательных чисел получилась весьма запутанной. Трактат “Артхашастра”,
19
Duvernoy S.
20
Если вы сочувствуете Леонардо, в этом нет ничего удивительного. Разумеется, можно просто принять, что при делении на число меньше единицы частное оказывается больше делимого. Не помешает, впрочем, разобраться в этом на примере. Допустим, мы делим 10 шоколадок между 5 хоккейными командами. Каждая команда получает по 2 шоколадки. Теперь допустим, что мы делим шоколадки между 2 командами. В таком случае каждая команда получает по 5 шоколадок. Чем меньше оказывается делитель, тем больше становится частное. Так продолжается, пока делитель не достигнет 1. Рассмотрим числа меньше 1. Допустим, мы делим 10 шоколадок между 1/3 команды. Треть хоккейной команды – это 2 человека. Следовательно, 10 шоколадок делится между 2 игроками, то есть каждый игрок получает по 5 шоколадок. Но это равнозначно тому, как если бы вся команда получила 5 × 6 = 30 шоколадок. Итак, при делении 10 на 1/3 получается 30.
21
McNamara J., Shaughnessy M. M.
22
Ответ на первый вопрос: 2/7, 1/2, 5/9. Ответ на второй вопрос: 2. Прийти к ним можно либо путем аппроксимации (и 12/13, и 7/8 близки к 1, поэтому их сумма близка к 2), либо путем приведения дробей к общему знаменателю. Превратим 12/13 в 96/104, умножив числитель и знаменатель на 8. Затем превратим 7/8 в 91/104, умножив числитель и знаменатель на 13. Сложим числители. 96 + 91 = 187, а значит, в сумме дроби дают 187/104. Это приблизительно 1,8, что ближе всего к 2.