Почему сердце находится слева, а стрелки часов движутся вправо. Тайны асимметричности мира. Крис Макманус

Читать онлайн.



Скачать книгу

id="n_51">

      51

      Chetwynd, T. (1993) Dictionary for Dreamers, London: Aquarian Press, p. 150–1; Lawrence, T. E. (1935) The Odyssey of Homer, London: Oxford University Press, p. 321.

      52

      Freud, S. ([1900] 1976) The Interpretation of Dreams, Harmondsworth: Penguin Books, pp. 475–503; Butler, A. J. C. (1898) Bismarck: The Man and the Statesman; Being the Reflections and Reminiscences of Otto Prince von Bismarck, vol. II, London: Smith, Elder and Co, p. 210; Domhoff, G. W. (1968) Psychoanalytic Review, 56: 587–96. См. веб-сайт.

      53

      Thass-Thienemann, T. (1955) Psychoanalytic Review, 42: 239–61, pp. 239, 260; Masson, J. S. The Complete Letters of Sigmund Freud to Wilhelm Fliess 1887–1904, Cambridge, MA: Harvard University Press, 1985 pp. 292–3.

      54

      См. веб-сайт.

/9j/4QAYRXhpZgAASUkqAAgAAAAAAAAAAAAAAP/sABFEdWNreQABAAQAAAA8AAD/7gAOQWRvYmUAZMAAAAAB/9sAhAAGBAQEBQQGBQUGCQYFBgkLCAYGCAsMCgoLCgoMEAwMDAwMDBAMDg8QDw4MExMUFBMTHBsbGxwfHx8fHx8fHx8fAQcHBw0MDRgQEBgaFREVGh8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx//wAARCAEjApoDAREAAhEBAxEB/8QAjAAAAgMBAQEBAQAAAAAAAAAAAAcFBggEAwIBCQEBAAAAAAAAAAAAAAAAAAAAABAAAgIBAwMDAgUCBQMBBAEVAQIDBAUREgYAIQcxIhNBFFEyIxUIYUJxgVIzFpFiJDSxckNTJaGiF/DBkmNzs1Q1N+Hx4kSEVXUmNhEBAAAAAAAAAAAAAAAAAAAAAP/aAAwDAQACEQMRAD8A1T0B0B0B0B0B0B0EbyLkuB43ipctnb0WPx8P+5YnbaNT6Ko9WY/RVBJ6DPfOv5o4Km1ipw7FPkpk1WLJXSYaxP8ArWIfquv/ALxQ9Ay8PxTI8x4xjc3NznOoMpVr29MdLTqRo0kYZ1T4IC2gY6aM7aemvQL/AMm+DORUOOyXMVyLI5WSvYWcNPPIuTMkyiHaln5ViZGlYOyGIH6KfxBO0M75twppcg4zYz0OKmgp/c/dJNZrmcv9qwHzmSKQSzLuHcEb9vqOganiT+X1PIyw4jn8cdG05CRZuAba7E6AfcJqfjJOurr7f6L0GmEdJEV0YOjgMrKdQQe4II6D96A6A6D8d1RS7kKiglmJ0AA9ST0H6rKyhlIKkagjuCD0B0BqNdPqfToDoDoDoDoDoOHMZvGYen93kJhDEWCRqAXkkkbXbHFGgZ5HbTsqgk9BROc8ryeNq1r2by3/ABnFzTotbGUITdy94kErXHtKwu50BEaP/wDjB0EFj2y+bw9jOY/hV6Bq0ywxrn8pkYMjKIgq/KkUK2WAG76P30On06Dl5dzLk3F4orOYxGfwNSRBLPl8XcXOVqzJr/6iK2jaJp3fbodB2/HoLFxDlPL7+Dmy2BzuK8g0Y+5SOP8AbLgfaHMWqmWEPt/KkiJ3Pdh0E1w/yzxbkmQlwzGbDcmrkizx/JoK9xfUgopJSVSo3Axse3foLp0B0B0B0B0B0B0B0B0B0B0B0B0B0B0B0B0B0B0Fd5nz/ivDqC287dWB5TtqU0HyWrEnoI4IV1d2JIHYafiR0Fdk5fzbK8ds5kVYOC4iNd5v58CW2sO3vKayOkUJGo2/LI3f1ToKNgPIeUz+ZOMw1zO87Af4p8vTSLCYeMxHeQs8SGYt6Kx36EHt0Fhkx/KJq+UymT4Zvkx25krx5zIS3ZhEokH27GMI+o/KA479vXXoDhXNJsxmnhweWuUsgsIltcH5VDIk6Kz9pYbZDTAMPTUzD+i/QGPheQV8k81SRGqZWpp97j5NQybvR0YhRLE2ntkT2n07EEAJXoDoDoDoDoDUa6fXoDoDoPlJI5N2xg20lW2kHRh6g6fUdB9dAdAdAdAmfMv8luN8Cmmw2MiXMcmQaSVgxEFZiuq/O49T6fpr3/Er0CAHPvPPke9CZLmWGEkeCS7XwcDRiOvNM0YKCHu/eFgvyP6j+hPQXTxR4w5Tzl8jn5MpdweOuLKKaWbE9uaKCectH9r+tGUMYiaMvJu3A6gdA78T4kvYuPSDnnJmIChTNarzqqqSQFSxXlX07dAoMd/MNMLyDJYbkFFs1jaduaGnnKJijmlgRyqO8IPwuTp+ZHUafToH1wfyXwnnFRrPGspFdMaq1it3SeLd6fJE+jj09dNPwPQWfoDoDoDoDoDoDoDoDoDoDoDoDoDoKl5D8l8d4Pjo5cg5sZO6TFiMPB7rNuc9ljjQakAsQCx7DX/LoET5KrZHHYFPJHlmZLuZkDJxPgeg+xqzyg6fcLqfmMabXkPbuNpJ9vQZO6DZn8S/JlzL8WyGKz+RhSLBNRo4tHEUAWKVZEiTcAm92aPTvqTp0GhLFavZj+KxEk0WqtskUMuqkMp0OvoRqOgzl5l43wyzlxirUdrjOOilsZDK2q8ZBuRztLJKzSfJsSINXMu0ROzH8oB9QyvzOnQpclu1MdZS5joWAo244vhWWBlDxvs7nurDu3c/XoNP/wAPfKuRykN3g+ZtSWpaMK2cLJJ7itZNI5IN3rohZSgP0JHoAOg010B0B0EXyqwlbjGXsPYiqJFTsO1qxuMMQWJjvk2+7Yvq2nfToIGCTyksdWOpTwK0VjiT5HuXJXKhQC67a0Sn8QP/AKvQduXm55VgSapJipwGCzLNHai0U9gU+JrDM27Qbdv+fbQhSOMci5TyHy1Qrcp49Fif2nFZGzipknaYvL9xWp2G7bRt/Ps/7WB9egbnQHQHQHQc2TyVHGUJ8hflEFOspeaUgnRR/RQST+AA1PQKC5l+b5bkLNhsdWs8zMJCCyzfZccqWId0YnJX9S9MTq6oPT2/k7sHH4w8a2cXkLOXyd2bk3IMmZcXnswzEW8TbVQ5EJd+8O7aVZV3L7GHtJ2gxKnL3TjlyDJzpU5DRllxRV11+4vJErwvXiDRtKJ0kjkVFOvu29tOgOQ1Zr2Pw+Iy9ZZsRNCJc/JaiSdH+ERqlVlYnWWeeRdu0NrtIHcjoM+eR+Pcj8G8wj5vwyzFDhM1OY7OAlZgkrsd/wAXxbmZgA3ZgfaQdNAwXoG9DkeC+WOO1MrS49LkZZ9qHJxiGrax9iMakC2zJKskDPqPj3f016Di475D5BxLJ28Dy358px7GypXPMHaJ2rllXauQ+L2ju6AyfmBPv7e7oHCrKyhlIZWGqsO4IP16D96A6A6A6A6A6A6A6A6A6A6A6A6A6A6A6Ba+Q/Kd3GzWcPxan+4ZGoUXMZI6CrjFl9waVj7WlEe6TYSAoGrn0BDlwXHMLxOOXkXLMXPksokQu5LmF5q9xowi/K20K26COHvtEMemg19T0CazPJeSfyB8i/8AF8beGO4PQkWaWqHMM9moGBNl42P6h9No09m5e2up6DQPFOL1uKZSrjuPVIYcE8IqZOvFCqSR3K8ZaK48u4u4ni9jbtx1Cd/zdB30+TRY2vnY8pYaW9jGuZAUOxtGgHd4mjTcTIpA2oRp9FPcdBS/IfD/APknGIDyeNcRPXjkzOS5MXLPihGxeOvVaMozvGrFdfyABm03MvQVynX57x3GYtOYuk8VPceM+QHD/NRMhX4YMxESriCfskh3EDtuIYBgDp4tnJsvjTJbrfZZOrI1bI09Swjnj0PsYhd0ciMskbad0YfXt0Ev0B0B0B0C38t5/OYDKcWv8exEeZzlmxaoV60sjRKIpa/3EzbgD6CqD6dBL4DMc/zHx2Za2OxdaWEWBVmFia3F8jsIo5ADFFrsXVmVz37aae7oPe5J5SjuAU4MHapDaS801utKf9Q2LFZUf0O4/wCHQdfDnsmvkktSVWtJkJ/nhpyPMkLPtl+JpHSEs4Dgn2D106Cf6A6A6BXfyM8lWuCeOp7WNk+LNZOQUcdKBqY2cFpJR9NUjU7f+7ToMASzzTTvYmcyzyOZJJJDvZnY6lmLa7iT669BpfhPDeF4vNJNWsWeR1rayUcliYYCldsgwSKZIEiljarNCJD3ZXj2tojg6DoNWYnFYvG04YMfTjpQpDFCkUaKm2OJdsaHb/oXsOgo3nXyBJxLx3mshh8hFByCn9r9vH+nK6GawijfE27RXQONWH+HQfz1sWJbFiWxMQ0sztJIwAUFmOpOigAdz9Ogf/gfHYjmNGvU49bHFPJ3GI2lx2VhAMORrO5LLaiP+4U3bG/7SPUDToNFeOPK02WyL8Q5hUGD59TUmbHnX4bcaj/1NR+6sjaE7ddR/h0DH6A6A6A6A6A6A6A6A6A6A6A6Cpc45rcw7RYfj1D965fejaTH4reI40jU6NZtSnQRQqfxOrn2r39AqGKwPHPHWPu+QfJWRgucsusZbWQl1kEBbV0o41JCzBU9FC9z/QegZO8z+ZM15OzsUssAq4mi8i4iiupdUl2gtKQTukbYPT09B0EBg/HXJcrjZMsaz1MRDtMt2WKUgxlHcyRxorPKq/HoxQEAka6Dv0H3RyUvEcxiRK63kp2a2Vs1a8yfC7r8c0SGWJpQxVRowZQVJYf16DdPh/y7hvIeFMkEsZzFNVOUrwRzrDG0jOEEbzIm/wBqgnT06Ce5pwnGcpw96jMxp3LdSWkmUhVTYiim0LqpYHVW291/9nr0GOPI/hOXitXIWcwymajjK8tef7tVWWYuK/xbZFd3MccYYKn+oDd206Cj+JeWjh/kXjue+dVrxWFTIHRyErTMYZ9wA7kRMXG3X6fXt0H9IEdHRXRgyMAVYHUEHuCCOg/egOgrHlGFJ/G3KoHJCS4m6jFRubRq7jsB6nv0HDBjuO3KtaSThUtkRurQy2qlFZRJGfbKVnlWRW176kA9BUPMnE+HW+K5HJ2eBSz5x0kFOxWhrLP9wyHZLNLWlbVFYD8+vf0BPQLL+KOXw+Q8iTLTp/Y3K2FupbiTX4CrXqhiaMN7hqNd2v17/wBAGsegOgOgOgU3kPNZvP8AO6PCeMpBPZpRLfvXpQ7wY6cv+lLOq7keRYlcwwuP9xkf0XsHpwrlPCOHcYmwlZLkOWr2LC/aX4JoshlLu8qZkMqIs8lhlB1jZgARqRpoAlKU8/Hblj9x5jio8tlJ47eTx98QoElaKOIpW2zQSKvxRoq/JvPbX69B4ZPLZqbLRZbBcewmQyti1+3U8g995pPt49zF2aGrIsI+NizD5Ne4Hc6dBbruWmrYhHy8FevekJ0gDy2YAyNqG+QQox0Gjd0Hft/XoIGpl+Mcvo5BY1kscZysZgt5WzuhqWJTtr/FUWchirop98Y2nttYtroCE/eM7/HjlsWPkNaTjPIkaSWHbI/xyVVMYsoiysUMzFSy9wF0HqOgcOGFfknHK3E+RY6nlqfJFt5CW7i7Rt01JsG07P8AMsMibZpkWNV39+x0A6CqcAz+T8S8rHjblWSbI8fs7ZcDnrLfGIFkVEjrN8kjDbvUqFX8p7+je0H70B0B0B0B0B0B0B0B0B0B0B0B0B0B0Ci8yeUrVOwOCcUfdynKGKrPcjYH9vS6THHIQrpIJPqGHZBox9VBDo4XwDHeMsJBx6lVTL5bPLN+55q1IKcc7RayMkz/AK8gIilkMYVG1CtuI9egUPIvI/IeWyYTwtjrNK2zoKWdv05JJFsCkGdYobUrJvE0cK732/mJ+nqDn4txDF8F4jHh62O+WGV/uOQVcWztPA0ujBlQO08kYWMIwUszAaqp1PQWvjfL8HnoXs4izDcSxuetJGksYcINpWUuntdGBRh6jT0B7dBW8tNyu9mmhznFcLNXx8C5PF25MhMCjwSBnHztS0RkZULei6EdyNdA9spma3IoHw9jleJxKZCGKNqVSWCe+kjgF0jmklMTe7sp+3PQftvm2DrY3I8c5kRYycKvWmptWkf9ygkXVJoK0C2JJI5EO2TYh2uHGnboKDg5rnjrM8ZuW4LJ4pmRFSr5e6ZUsUalhWeDH5CE7UDQTughmfuqb0/AdA/OgOgOgOgRn8rb+Ix+D41cy0Uk1KLIT7oYdAzu1CdYl1PopkK7v6dBWP438c4VmcJLk8lwT7nMxOzJceJJabrtiZY4VsyBEdRIGG4fjtY+nQO98ZhDYa0/CdbJjVGm+DGlzHGCETd82pCgaAdB+ePY6qrn5KteepFPlGl+1sxGCSMtTrapsPoB/bp209OgtnQHQHQYj/l/yn948ow4RLKmlg6scJA1Kxz2D8sxbTXvt2A6fhp69BRvHPAE5TFWkr11u2v3StQmo/dLExgnjmaScx7fk2x7UOqk+jaj8A2j4o8Tpw/EbMvcfM5Zrc90WLAV1hlnIDtDrqwMm0MzFidfw6C08x5lx/h+DkzmfsNWxsTxxyTLG8pDSsFX2xhm9T+HQYO8leTJOcc2s5GRY6sV+COjZau0hhkWMt8L7ZzBt2sUJ3HsQT6HToIWTxhyhqE92hEMnHUZ47Qph5tHSUx/psq7JhoN+sZbaPzaHoOLhnLs9wbldPkGMUR5GgzaQzq2x1ZTG8cigqSCCR/j0Gy8Fn/HPn3hyxSOMdyeqiyMIWCZChOp/wB2tJoHaLcfUdjrodD0Fj4VyvleHtVeJ+QoEiyLn7fDchhJapkRGNFDsxJitMq7ij/m/t6Bi9AdAdAdAdAdAdAdAdAdBVPIPO4+LVKcFWuchyHMTCphMWu7WaY6bncqGKwxA7pG+g/rp0CnzfPuN+E8dkLuUvJyzyTyGczZMRSBANmvxxsCZGgghV9EXTVv/YGZPIHOufeQ7g5ByESzU4Q8VRYI2SpCF0ZljHcagsu8klvTU+nQQvHuPZW1dqTChYngcNPDGiujWI4GHyiFwp1I+pXXToGV5FwmQi/45LNGtKhkqcN6q8Mlqwa9J0EbV2Mny2QFcM8pSNVBb8pO0dB72ePcb5Xja9PjXGxKvG8PNZydz42xliyYq4KWBIxkWcTSEyorIH2IRqNdegg+H5rlfh3n2Kvz11pxXoYfvHO2dLONnmUtJCdfaHEW5fQ/5dug/oDFJHLGksbBo3AZGHoQRqCOgz5/KazLQsY2UwwzU8pjsjQtmaCVxGqRfMJFkEixGVW0aJHT8w1DAgEBjWwkcc8kcUnyxI7COTQruUHQNtPcaj6dB/RTwby+Llfi3AZMNrYirrTuAnVhPVHxOW/9/aH/AM+gmuQ80rYa4Ka4zI5WyIRYmjxtf5zFG7lIy+rJ+dkYKF1PtJOg79BwYrydiL3IquAs47IYi/drT26f7lFHAsqVmUSqNJHcOA4fayg7e/p0Hv5JuQjxvyizEyzCDF25NFdQCUgZtpb0GunQV/jfNeYZDhWS5nl/tcfUpfuMv7TWiFyQQ0fkUaWVsBJGJi17KAf6evQVflPIfM78byORr5jimtCdGNBXSWOSs0aOyWJrEiRoyMe/puXuPpqFH/iHgKlLnPK7E8sT5WGqkRjg3CJEltSGQR7j70PwRsrfQHToNU9AdB5zWa0OnzSpFr6b2C+n+PQQuU5lh63GsjnMbNFmI6Csqw0pUlMljQCOuGQsBI7OqgevcduggsdwXkuFw8Q47latHNXJHucgnt1Dbit3LGjTS+ySvKu1vbGN+0LoNOgmMxS5nJjqWOx9qt9wwRclnJgUkRQQJWr10Vl+V0LbSzBUP0b06DzyWUrWZY4MHZx1+9ij8luC2TIQi+zZ9ypb4JS4HuZW9D7fqA8eL+RqHJLYqY/HXWkhkkiyU+xDVrPGNQDZD/FP8mo2fAXOh1YL0EnyTktTBiu2QrWTjbG9LOSgjMsNUgDabATdIiPqf1NpVdPcVHQcMXAeI2qWJSapBkquIiqJhpJ1E3wLUA+N4n17Mdo1cdz9dR0FV8u8Dl8gVrdGnWx5y2BQS4ua9EZ901iM6xkb0VEYADV1ca6Np26DPHhzN858QeRqOF5XTkoYbMSLVspbOkUQmkCCzE2uxV3qNzejAf0HQaB8t8UxPkLg/JK+DsLlckIqs1aCFgRHZqNIwCuO3yvE7LsY/hrpu16Cufxh85WOY46TjHI7Py8lx6b69qTaDarDRe/puljP5vxHf8egffQHQHQHQHQHQHQHQHQHQHQHQHQL7zX5Xx3jniE2QZkkzVsNDhqZ775yPzsuoPxx+rf9PU9As/4/cYezw7K+QeYTvXynJcjBaky0mmrVa1mOVARoViikmj0J7aKB6AA9BCfyc8j5XkmXw/AuEs1xp1W3PYpOfklezDLEldSpHtau7lh/cG6Cw+BPD+a4fjsbybklDHxZZSlSpWavsuQQ3LG1pJZ1cKZj8ug3IWCezcNdOgd9niWAnzYzpowLmlESrkvjBsCOJidgk/MFIYrp/XoIzjV7BY7IycZwcFq3Eti5bvXkQtUrzWZ2tSRPYbarOZJzpGm4qPzadB38q5dS4zVF7I1LkuOCSPYuVIGsrD8YDASJFulAfvowTaNPcV7dBE43k9ewYuR5QY/G4icfFUd2Wa0GcAo1izGzQQjRXUpqw109+vt6CSoJyCLNyTwTwZPjeQ2zQStLpPVLKxcRlUZZ4XbaV1cFdT6roAHE3FeUZGe3S5HmKmT4zZWWNsalARTSxyggJPMZZFIj3e0xxqew1PQfXC782Pw97E5u2hm4zIas2QmZUElNYlmrWZCdAP0HCyN6b0foLDTyuLuxxy0rkFmOUaxPDIkisP8AtKk6+nQdXQHQIr+YONo3PHGMNiX4ZEy8CQyaFtPkilVvYPzdugqvhS95Zp8JmejleN47GUasQoV7RiKyzMsY325YpRNG6ICG+QeoAUbe4BwYbkHM81gcrNUvUI8vhprFKwq1mlqS2YollQxSGxGfjYSLqTpp3B9Og9fE3KLvIsDkM5lKkWNt2bUb2K8dhLEan7Cr3EiHQBh32k6r6Hv0ErybnuJwNjF1TXs5O5mJJYqVbHrHK5+BPklZt8kaqiL+Zte3Qc+N8iwXbletNgM1jksSLD91epGGFJJNdiu29j7mG3U