Техническая литература

Различные книги в жанре Техническая литература

Variable Speed AC Drives with Inverter Output Filters

Haitham Abu-Rub

The advance of variable speed drives systems (VSDs) engineering highlights the need of specific technical guidance provision by electrical machines and drives manufacturers, so that such applications can be properly designed to present advantages in terms of both energy efficiency and expenditure. This book presents problems and solutions related to inverter-fed electrical motors. Practically orientated, the book describes the reasons, theory and analysis of those problems. Various solutions for individual problems are presented together with the complete design process, modelling and simulation examples with MATLAB/Simulink on the companion website. A key focus of Variable Speed AC Drives with Inverter Output Filters is to examine the state variables estimation and motor control structures which have to be modified according to the used solution (filter). In most control systems the structure and parameters are taken into account to make it possible for precise control of the motor. This methodology is able to include modifications and extensions depending on specific control and estimation structures. Highly accessible, this is an invaluable resource for practising R&D engineers in drive companies, power electronics & control engineers and manufacturers of electrical drives. Senior undergraduate and postgraduate students in electronics and control engineering will also find it of value.

Energy Storage in Power Systems

Andreas Sumper

Over the last century, energy storage systems (ESSs) have continued to evolve and adapt to changing energy requirements and technological advances. Energy Storage in Power Systems describes the essential principles needed to understand the role of ESSs in modern electrical power systems, highlighting their application for the grid integration of renewable-based generation. Key features: Defines the basis of electrical power systems, characterized by a high and increasing penetration of renewable-based generation. Describes the fundamentals, main characteristics and components of energy storage technologies, with an emphasis on electrical energy storage types. Contains real examples depicting the application of energy storage systems in the power system. Features case studies with and without solutions on modelling, simulation and optimization techniques. Although primarily targeted at researchers and senior graduate students, Energy Storage in Power Systems is also highly useful to scientists and engineers wanting to gain an introduction to the field of energy storage and more specifically its application to modern power systems.

Process Simulation Using WITNESS

Raid Al-Aomar

Teaches basic and advanced modeling and simulation techniques to both undergraduate and postgraduate students and serves as a practical guide and manual for professionals learning how to build simulation models using WITNESS, a free-standing software package. This book discusses the theory behind simulation and demonstrates how to build simulation models with WITNESS. The book begins with an explanation of the concepts of simulation modeling and a “guided tour” of the WITNESS modeling environment. Next, the authors cover the basics of building simulation models using WITNESS and modeling of material-handling systems. After taking a brief tour in basic probability and statistics, simulation model input analysis is then examined in detail, including the importance and techniques of fitting closed-form distributions to observed data. Next, the authors present simulation output analysis including determining run controls and statistical analysis of simulation outputs and show how to use these techniques and others to undertake simulation model verification and validation. Effective techniques for managing a simulation project are analyzed, and case studies exemplifying the use of simulation in manufacturing and services are covered. Simulation-based optimization methods and the use of simulation to build and enhance lean systems are then discussed. Finally, the authors examine the interrelationships and synergy between simulation and Six Sigma. Emphasizes real-world applications of simulation modeling in both services and manufacturing sectors Discusses the role of simulation in Six Sigma projects and Lean Systems Contains examples in each chapter on the methods and concepts presented Process Simulation Using WITNESS is a resource for students, researchers, engineers, management consultants, and simulation trainers.

Novel Process Windows. Innovative Gates to Intensified and Sustainable Chemical Processes

Volker Hessel

This book introduces the concept of novel process windows, focusing on cost improvements, safety, energy and eco-efficiency throughout each step of the process. The first part presents the new reactor and process-related technologies, introducing the potential and benefit analysis. The core of the book details scenarios for unusual parameter sets and the new holistic and systemic approach to processing, while the final part analyses the implications for green and cost-efficient processing. With its practical approach, this is invaluable reading for those working in the pharmaceutical, fine chemicals, fuels and oils industries.

Computational Liquid Crystal Photonics. Fundamentals, Modelling and Applications

Salah Obayya

Optical computers and photonic integrated circuits in high capacity optical networks are hot topics, attracting the attention of expert researchers and commercial technology companies. Optical packet switching and routing technologies promise to provide a more efficient source of power, and footprint scaling with increased router capacity; integrating more optical processing elements into the same chip to increase on-chip processing capability and system intelligence has become a priority. This book is an in-depth look at modelling techniques and the simulation of a wide range of liquid crystal based modern photonic devices with enhanced high levels of flexible integration and enhanced power processing. It covers the physics of liquid crystal materials; techniques required for modelling liquid crystal based devices; the state-of-the art liquid crystal photonic based applications for telecommunications such as couplers, polarization rotators, polarization splitters and multiplexer-demultiplexers; liquid core photonic crystal fiber (LC-PCF) sensors including biomedical and temperature sensors; and liquid crystal photonic crystal based encryption systems for security applications. Key features Offers a unique source of in-depth learning on the fundamental principles of computational liquid crystal photonics. Explains complex concepts such as photonic crystals, liquid crystals, waveguides and modes, and frequency- and time-domain techniques used in the design of liquid crystal photonic crystal photonic devices in terms that are easy to understand. Demonstrates the useful properties of liquid crystals in a diverse and ever-growing list of technological applications. Requires only a foundational knowledge of mathematics and physics.

Cable System Transients. Theory, Modeling and Simulation

Akihiro Ametani

A systematic and comprehensive introduction to electromagnetic transient in cable systems, written by the internationally renowned pioneer in this field Presents a systematic and comprehensive introduction to electromagnetic transient in cable systems Written by the internationally renowned pioneer in the field Thorough coverage of the state of the art on the topic, presented in a well-organized, logical style, from fundamentals and practical applications A companion website is available

Entrepreneurial Ecosystems

Sophie Boutillier

In today’s rapidly changing business landscape, entrepreneurship is growing and actively promoted by policy makers. Several reports explore the influence of entrepreneurship on the economy and put some emphasis on its positive influence GDP per capita, unemployment and exports. However, entrepreneurship does not go per se and it is now broadly admitted that the decision of the entrepreneur is narrowly connected with its environment, the so-called entrepreneurial ecosystem. This book show why policymakers, entrepreneurship supporters, and entrepreneurs themselves should keep in mind the locally structured nature of entrepreneurial networks. Even if the notion of Entrepreneurial Ecosystem has become quite popular, among the international organization, development agencies and public administrations, this concept is often considered as a new one having its origins in very recent publications. This books aims at showing that entrepreneurial ecosystems have their roots in the history of economic thought and that scholars have long been conscious of their importance. Instead of insisting upon the diversity of agents involved in these organizations, it also put some emphasis on the importance of the linkages and sharing between them and suggests some orientations in view of a performing evaluation system.

Thermal Management of Electric Vehicle Battery Systems

Ibrahim Dincer

Thermal Management of Electric Vehicle Battery Systems provides a thorough examination of various conventional and cutting edge electric vehicle (EV) battery thermal management systems (including phase change material) that are currently used in the industry as well as being proposed for future EV batteries. It covers how to select the right thermal management design, configuration and parameters for the users’ battery chemistry, applications and operating conditions, and provides guidance on the setup, instrumentation and operation of their thermal management systems (TMS) in the most efficient and effective manner. This book provides the reader with the necessary information to develop a capable battery TMS that can keep the cells operating within the ideal operating temperature ranges and uniformities, while minimizing the associated energy consumption, cost and environmental impact. The procedures used are explained step-by-step, and generic and widely used parameters are utilized as much as possible to enable the reader to incorporate the conducted analyses to the systems they are working on. Also included are comprehensive thermodynamic modelling and analyses of TMSs as well as databanks of component costs and environmental impacts, which can be useful for providing new ideas on improving vehicle designs. Key features: Discusses traditional and cutting edge technologies as well as research directions Covers thermal management systems and their selection for different vehicles and applications Includes case studies and practical examples from the industry Covers thermodynamic analyses and assessment methods, including those based on energy and exergy, as well as exergoeconomic, exergoenvironmental and enviroeconomic techniques Accompanied by a website hosting codes, models, and economic and environmental databases as well as various related information Thermal Management of Electric Vehicle Battery Systems is a unique book on electric vehicle thermal management systems for researchers and practitioners in industry, and is also a suitable textbook for senior-level undergraduate and graduate courses.

Multidisciplinary Design Optimization Supported by Knowledge Based Engineering

Alan Morris

Multidisciplinary Design Optimization supported by Knowledge Based Engineering supports engineers confronting this daunting and new design paradigm. It describes methodology for conducting a system design in a systematic and rigorous manner that supports human creativity to optimize the design objective(s) subject to constraints and uncertainties. The material presented builds on decades of experience in Multidisciplinary Design Optimization (MDO) methods, progress in concurrent computing, and Knowledge Based Engineering (KBE) tools. Key features: Comprehensively covers MDO and is the only book to directly link this with KBE methods Provides a pathway through basic optimization methods to MDO methods Directly links design optimization methods to the massively concurrent computing technology Emphasizes real world engineering design practice in the application of optimization methods Multidisciplinary Design Optimization supported by Knowledge Based Engineering is a one-stop-shop guide to the state-of-the-art tools in the MDO and KBE disciplines for systems design engineers and managers. Graduate or post-graduate students can use it to support their design courses, and researchers or developers of computer-aided design methods will find it useful as a wide-ranging reference.

Handbook of Composites from Renewable Materials, Polymeric Composites

Vijay Thakur Kumar

The Handbook of Composites From Renewable Materials comprises a set of 8 individual volumes that brings an interdisciplinary perspective to accomplish a more detailed understanding of the interplay between the synthesis, structure, characterization, processing, applications and performance of these advanced materials. The handbook covers a multitude of natural polymers/ reinforcement/ fillers and biodegradable materials. Together, the 8 volumes total at least 5000 pages and offers a unique publication. This 6th volume Handbook is solely focused on Polymeric Composites. Some of the important topics include but not limited to: Keratin as renewable material for developing polymer composites; natural and synthetic matrices; hydrogels in tissue engineering; smart hydrogels: application in bioethanol production; principle renewable biopolymers; application of hydrogel biocomposites for multiple drug delivery; nontoxic holographic materials; bioplasticizer – epoxidized vegetable oils-based poly (lactic acid) blends and nanocomposites; preparation, characterization and adsorption properties of poly (DMAEA) – cross-linked starch gel copolymer in waste water treatments; study of chitosan crosslinking hydrogels for absorption of antifungal drugs using molecular modelling; pharmaceutical delivery systems composed of chitosan; eco-friendly polymers for food packaging; influence of surface modification on the thermal stability and percentage of crystallinity of natural abaca fiber; influence of the use of natural fibers in composite materials assessed on a life cycle perspective; plant polysaccharides-blended ionotropically-gelled alginate multiple-unit systems for sustained drug release; vegetable oil based polymer composites; applications of chitosan derivatives in wastewater treatment; novel lignin-based materials as a products for various applications; biopolymers from renewable resources and thermoplastic starch matrix as polymer units of multi-component polymer systems for advanced applications; chitosan composites: preparation and applications in removing water pollutants and recent advancements in biopolymer composites for addressing environmental issues.