In order to develop excellent photonic devices, we have to fully understand the physics behind operations of photonic devices. This book thoroughly teaches the fundamental physics currently applied to the development of photonics devices such as energy bands of semiconductors, optical transitions, optical waveguides, and semiconductor junctions. The book also reviews the characteristics of laser diodes, optical filters, and optical functional devices, which have been developed based on the above physics. These photonic devices have been demonstrated in system applications, and several experimental results are described.
Organised and written as an accessible study guide for student pilots wishing to take commercial ground examinations to obtain ATPL or CPL licenses, Principles of Flight for Pilots also provides a reliable up-to-date reference for qualified and experienced personnel wishing to further improve their understanding of the Principles of Flight and related subjects. Providing a unique aerodynamics reference tool, unlike any book previously Principles of Flight for Pilots explains in significant depth all the topics necessary to pass the Principles of Flight examination as required by the EASA syllabus. Aviation ground instructor Peter J. Swatton, well reputed for his previous works in the field of pilot ground training, presents the subject in seven parts including basic aerodynamics; level flight aerodynamics; stability; manoeuvre aerodynamics; and other aerodynamic considerations. Each chapter includes self-assessed questions, 848 in total spread over eighteen chapters, with solutions provided at the end of the book containing full calculations and explanations.
Wiley has long held a pre-eminent position as a publisher of books on geotechnical engineering, with a particular strength in soil behavior and soil mechanics, at both the academic and professional level. This reference will be the first book focused entirely on the unique engineering properties of residual soil. Given the predominance of residual soils in the under-developed parts of the United States and the Southern Hemisphere, and the increasing rate of new construction in these regions, the understanding of residual soils is expected to increase in importance in the coming years. This book will be written for the practicing geotechnical engineer working to any degree with residual soils. It will describe the unique properties of residual soil and provide innovative design techniques for building on it safely.The author will draw on his 30 years of practical experience as a practicing geotechnical engineer, imbuing the work with real world examples and practice problems influenced by his work in South America and Southeast Asia.
CCPS (Center for Chemical Process Safety)
It is crucial for process safety professionals to be aware of best practices for post merger integration at any level. A compilation of industry best practices from both technical and financial perspectives, this book provides a single reference that addresses acquisitions and merger integration issues related to process safety. Presently, there are limited references on how to handle acquisitions in several different CCPS publications and almost no coverage of the post-merger integration issue, so this reference fills a notable gap in the coverage.
CCPS (Center for Chemical Process Safety)
The first part of this book (Chapters 1 and 2) provides an introduction and discusses basic concepts. Chapter 3 deals with the use of the basic human senses for identifying hazards. Chapter 4 deals with different classes and categories of hazards. Chapter 5 deals with techniques and methodologies for identifying and evaluating hazards. Chapter 6 deals with making risk based decisions. Chapter 7 deals with follow-up and call to action. Chapter 8 deals with learning and continuous improvement. The Appendices provide references, case studies, hazard presentations and additional pictures. Note: CD-ROM/DVD and other supplementary materials are not included as part of eBook file.
Introduction to Nanoscience and Nanotechnology explains nanotechnology to an audience that does not necessarily have a scientific background. It covers all aspects, including the new areas of biomedical applications and the use of nanotechnology to probe the «quantum vacuum.» After discussing the present state of the art in nanotechnology, the book makes estimates of where these technologies are going and what will be possible in the future.
Presents the state of the technology, from fundamentals to new materials and applications Today's electronic devices, computers, solar cells, printing, imaging, copying, and recording technology, to name a few, all owe a debt to our growing understanding of the photophysics and photochemistry of polymeric materials. This book draws together, analyzes, and presents our current understanding of polymer photochemistry and photophysics. In addition to exploring materials, mechanisms, processes, and properties, the handbook also highlights the latest applications in the field and points to new developments on the horizon. Photochemistry and Photophysics of Polymer Materials is divided into seventeen chapters, including: Optical and luminescent properties and applications of metal complex-based polymers Photoinitiators for free radical polymerization reactions Photovoltaic polymer materials Photoimaging and lithographic processes in polymers Photostabilization of polymer materials Photodegradation processes in polymeric materials Each chapter, written by one or more leading experts and pioneers in the field, incorporates all the latest findings and developments as well as the authors' own personal insights and perspectives. References guide readers to the literature for further investigation of individual topics. Together, the contributions represent a series of major developments in the polymer world in which light and its energy have been put to valuable use. Not only does this reference capture our current state of knowledge, but it also provides the foundation for new research and the development of new materials and new applications.
Design and Analysis of Composite Structures enables graduate students and engineers to generate meaningful and robust designs of complex composite structures. Combining analysis and design methods for structural components, the book begins with simple topics such as skins and stiffeners and progresses through to entire components of fuselages and wings. Starting with basic mathematical derivation followed by simplifications used in real-world design, Design and Analysis of Composite Structures presents the level of accuracy and range of applicability of each method. Examples taken from actual applications are worked out in detail to show how the concepts are applied, solving the same design problem with different methods based on different drivers (e.g. cost or weight) to show how the final configuration changes as the requirements and approach change. Provides a toolkit of analysis and design methods to most situations encountered in practice, as well as analytical frameworks and the means to solving them for tackling less frequent problems. Presents solutions applicable to optimization schemes without having to run finite element models at each iteration, speeding up the design process and allowing examination of several more alternatives than traditional approaches. Includes guidelines showing how decisions based on manufacturing considerations affect weight and how weight optimization may adversely affect the cost. Accompanied by a website at www.wiley.com/go/kassapoglou hosting lecture slides and solutions to the exercises for instructors.
This book provides state-of-the-art coverage for making measurements on RF and Microwave Components, both active and passive. A perfect reference for R&D and Test Engineers, with topics ranging from the best practices for basic measurements, to an in-depth analysis of errors, correction methods, and uncertainty analysis, this book provides everything you need to understand microwave measurements. With primary focus on active and passive measurements using a Vector Network Analyzer, these techniques and analysis are equally applicable to measurements made with Spectrum Analyzers or Noise Figure Analyzers. The early chapters provide a theoretical basis for measurements complete with extensive definitions and descriptions of component characteristics and measurement parameters. The latter chapters give detailed examples for cases of cable, connector and filter measurements; low noise, high-gain and high power amplifier measurements, a wide range of mixer and frequency converter measurements, and a full examination of fixturing, de-embedding, balanced measurements and calibration techniques. The chapter on time-domain theory and measurements is the most complete treatment on the subject yet presented, with details of the underlying mathematics and new material on time domain gating. As the inventor of many of the methods presented, and with 30 years as a development engineer on the most modern measurement platforms, the author presents unique insights into the understanding of modern measurement theory. Key Features: Explains the interactions between the device-under-test (DUT) and the measuring equipment by demonstrating the best practices for ascertaining the true nature of the DUT, and optimizing the time to set up and measure Offers a detailed explanation of algorithms and mathematics behind measurements and error correction Provides numerous illustrations (e.g. block-diagrams for circuit connections and measurement setups) and practical examples on real-world devices, which can provide immediate benefit to the reader Written by the principle developer and designer of many of the measurement methods described This book will be an invaluable guide for RF and microwave R&D and test engineers, satellite test engineers, radar engineers, power amplifier designers, LNA designers, and mixer designers. University researchers and graduate students in microwave design and test will also find this book of interest.
Practical, easy-to-follow advice that saves lives Based on the author's thirty years of hands-on experience working in the field of industrial fuel systems and combustion equipment safety, this book integrates safety codes with practical, tested, and proven guidance that makes it viable to specify, operate, and maintain industrial fuel and combustion systems as safely as possible. Readers will learn about fuels, piping, combustion, controls, and risks from more than fifty «real-life stories» the author has integrated into each chapter so one can immediately see and understand the concepts presented. The incidents depicted resulted in forty-six deaths, hundreds of serious injuries, and billions of dollars in losses. Each example is followed by lessons learned, helping readers understand what could have been done to avoid the disaster or minimize the resulting destruction of life and property. The book begins with an introductory chapter that presents key concepts in industrial fuel and combustion systems safety. Next, chapters cover such topics as: Combustion and natural gas piping basics Gas supply system issues Gas piping repairs and cleaning Fuel trains and combustion equipment Boilers and their unique risks Controlling combustion risks: people, policy, equipment The final two chapters address risks related to facilities outside of the United States, as well as business contingency planning related to fuels and combustion equipment. The last chapter explains how to plan for and then respond quickly and effectively to fuel or combustion system incidents. Filled with practical, easy-to-follow advice that saves lives, Fuel and Combustion Systems Safety is an essential reference for everyone from equipment operators and maintenance personnel to corporate risk managers and global safety directors.