A solid, quantitative, practical introduction to a wide range of renewable energy systems—in a completely updated, new edition The second edition of Renewable and Efficient Electric Power Systems provides a solid, quantitative, practical introduction to a wide range of renewable energy systems. For each topic, essential theoretical background is introduced, practical engineering considerations associated with designing systems and predicting their performance are provided, and methods for evaluating the economics of these systems are presented. While the book focuses on the fastest growing, most promising wind and solar technologies, new material on tidal and wave power, small-scale hydroelectric power, geothermal and biomass systems is introduced. Both supply-side and demand-side technologies are blended in the final chapter, which introduces the emerging smart grid. As the fraction of our power generated by renewable resources increases, the role of demand-side management in helping maintain grid balance is explored. Renewable energy systems have become mainstream technologies and are now, literally, big business. Throughout this edition, more depth has been provided on the financial analysis of large-scale conventional and renewable energy projects. While grid-connected systems dominate the market today, off-grid systems are beginning to have a significant impact on emerging economies where electricity is a scarce commodity. Considerable attention is paid to the economics of all of these systems. This edition has been completely rewritten, updated, and reorganized. New material has been presented both in the form of new topics as well as in greater depth in some areas. The section on the fundamentals of electric power has been enhanced, making this edition a much better bridge to the more advanced courses in power that are returning to many electrical engineering programs. This includes an introduction to phasor notation, more emphasis on reactive power as well as real power, more on power converter and inverter electronics, and more material on generator technologies. Realizing that many students, as well as professionals, in this increasingly important field may have modest electrical engineering backgrounds, early chapters develop the skills and knowledge necessary to understand these important topics without the need for supplementary materials. With numerous completely worked examples throughout, the book has been designed to encourage self-instruction. The book includes worked examples for virtually every topic that lends itself to quantitative analysis. Each chapter ends with a problem set that provides additional practice. This is an essential resource for a mixed audience of engineering and other technology-focused individuals.
Applied Metrology for Manufacturing Engineering, stands out from traditional works due to its educational aspect. Illustrated by tutorials and laboratory models, it is accessible to users of non-specialists in the fields of design and manufacturing. Chapters can be viewed independently of each other. This book focuses on technical geometric and dimensional tolerances as well as mechanical testing and quality control. It also provides references and solved examples to help professionals and teachers to adapt their models to specific cases. It reflects recent developments in ISO and GPS standards and focuses on training that goes hand in hand with the progress of practical work and workshops dealing with measurement and dimensioning.
Part 1 is particularly concerned with physical properties, electrical ageing and modeling with topics such as the physics of charged dielectric materials, conduction mechanisms, dielectric relaxation, space charge, electric ageing and life end models and dielectric experimental characterization. Part 2 concerns some applications specific to dielectric materials: insulating oils for transformers, electrorheological fluids, electrolytic capacitors, ionic membranes, photovoltaic conversion, dielectric thermal control coatings for geostationary satellites, plastics recycling and piezoelectric polymers.
Increasing urbanization throughout the world, the depletion of fossil fuels and concerns about global warming have transformed the city into a physical problem of prime importance. This book proposes a multi-disciplinary and systematic approach concerning specialities as different as meteorology, geography, architecture and urban engineering systems, all surrounding the essential problem of solar radiation. It collects the points of view of 18 specialists from around the world on the interaction between solar energy and constructions, combining territorial, urban and architectural scales to better regulate energetic efficiency and light comfort for the sustainable city. The main subjects covered are: measures and models of solar irradiance (satellite observations, territorial and urban ground measurements, sky models, satellite data and urban mock-up), radiative contribution to the urban climate (local heat balance, radiative-aerodynamics coupling, evapotranspiration, Urban Heat Island), light and heat modeling (climate-based daylight modeling, geometrical models of the city, solar radiation modeling for urban environments, thermal simulation methods and algorithms) and urban planning, with special considerations for solar potential, solar impact and daylight rights in the temperate, northern and tropical climates, and the requirement of urban solar regulation. Contents 1. The Odyssey of Remote Sensing from Space: Half a Century of Satellites for Earth Observations, Théo Pirard. 2. Territorial and Urban Measurements, Marius Paulescu and Viorel Badescu. 3. Sky Luminance Models, Matej Kobav and Grega Bizjak. 4. Satellite Images Applied to Surface Solar Radiation Estimation, Bella Espinar and Philippe Blanc. 5. Worldwide Aspects of Solar Radiation Impact, Benoit Beckers. 6. Local Energy Balance, Pierre Kastendeuch. 7. Evapotranspiration, Marjorie Musy. 8. Multiscale Daylight Modeling for Urban Environments, John Mardaljevic and George Janes. 9. Geometrical Models of the City, Daniel G. Aliaga. 10. Radiative Simulation Methods, Pierre Beckers and Benoit Beckers. 11. Radiation Modeling Using the Finite Element Method, Tom van Eekelen. 12. Dense Cities in the Tropical Zone, Edward Ng. 13. Dense Cities in Temperate Climates: Solar and Daylight Rights, Guedi Capeluto. 14. Solar Potential and Solar Impact, Frédéric Monette and Benoit Beckers. Appendix 1. Table of Europe’s Platforms (Micro- and Minisatellites) for Earth Observations, Théo Pirard. Appendix 2. Commercial Operators of Earth Observation (EO) Satellites (as of January 1, 2012), Théo Pirard. Appendix 3. Earth’s Annual Global Mean Energy Budget, Benoit Beckers.
Enables chemical engineering students to bridge theory and practice Integrating scientific principles with practical engineering experience, this text enables readers to master the fundamentals of chemical processing and apply their knowledge of such topics as material and energy balances, transport phenomena, reactor design, and separations across a broad range of chemical industries. The author skillfully guides readers step by step through the execution of both chemical process analysis and equipment design. Principles of Chemical Engineering Practice is divided into two sections: the Macroscopic View and the Microscopic View. The Macroscopic View examines equipment design and behavior from the vantage point of inlet and outlet conditions. The Microscopic View is focused on the equipment interior resulting from conditions prevailing at the equipment boundaries. As readers progress through the text, they'll learn to master such chemical engineering operations and equipment as: Separators to divide a mixture into parts with desirable concentrations Reactors to produce chemicals with needed properties Pressure changers to create favorable equilibrium and rate conditions Temperature changers and heat exchangers to regulate and change the temperature of process streams Throughout the book, the author sets forth examples that refer to a detailed simulation of a process for the manufacture of acrylic acid that provides a unifying thread for equipment sizing in context. The manufacture of hexyl glucoside provides a thread for process design and synthesis. Presenting basic thermodynamics, Principles of Chemical Engineering Practice enables students in chemical engineering and related disciplines to master and apply the fundamentals and to proceed to more advanced studies in chemical engineering.
Reverse Engineering in Control Design proposes practical approaches to building a standard H-infinity problem taking into account an initial controller. Such approaches allow us to mix various control objectives and to initialize procedures for a fixed-structure controller design. They are based on the Observer-Based Realization (OBR) of controllers. The interest of OBR from the controller implementation point of view is detailed and highlighted in this book through academic examples. An open-source toolbox is available to implement these approaches in Matlab®. Throughout the book academic applications are proposed to illustrate the various basic principles. These applications have been chosen by the author for their pedagogic contents and demo files and embedded Matlab® functions can be downloaded so readers can run these illustrations on their personal computers. Contents 1. Observer-based Realization of a Given Controller. 2. Cross Standard Form and Reverse Engineering. 3. Reverse Engineering for Mechanical Systems. Appendix 1. A Preliminary Methodological Example. Appendix 2. Discrete-time Case. Appendix 3. Nominal State-feedback for Mechanical Systems. Appendix 4. Help of Matlab® Functions. About the Authors Daniel Alazard is Professor in System Dynamics and Control at Institut Supérieur de l'Aéronautique et de l’Espace (ISAE), Toulouse, France – SUPAERO Graduate Program. His main research interests concern robust control, flexible structure control and their applications to various aerospace systems.
Logic and its components (propositional, first-order, non-classical) play a key role in Computer Science and Artificial Intelligence. While a large amount of information exists scattered throughout various media (books, journal articles, webpages, etc.), the diffuse nature of these sources is problematic and logic as a topic benefits from a unified approach. Logic for Computer Science and Artificial Intelligence utilizes this format, surveying the tableaux, resolution, Davis and Putnam methods, logic programming, as well as for example unification and subsumption. For non-classical logics, the translation method is detailed. Logic for Computer Science and Artificial Intelligence is the classroom-tested result of several years of teaching at Grenoble INP (Ensimag). It is conceived to allow self-instruction for a beginner with basic knowledge in Mathematics and Computer Science, but is also highly suitable for use in traditional courses. The reader is guided by clearly motivated concepts, introductions, historical remarks, side notes concerning connections with other disciplines, and numerous exercises, complete with detailed solutions, The title provides the reader with the tools needed to arrive naturally at practical implementations of the concepts and techniques discussed, allowing for the design of algorithms to solve problems.
This book explores the fundamental role of grain boundaries in the plasticity of crystalline materials, providing a multi-scale approach to plasticity to facilitate understanding. It starts with the atomic description of a grain boundary, moves on to the elemental interaction processes between dislocations and grain boundaries, and finally shows how the microscopic phenomena influence the macroscopic behaviors and constitutive laws. Drawing on topics from physical, chemical, and mechanical disciplines, this work also explains properties of deformation at low and high temperature, creep, fatigue, and rupture.
This book develops the stochastic geometry framework for image analysis purpose. Two main frameworks are described: marked point process and random closed sets models. We derive the main issues for defining an appropriate model. The algorithms for sampling and optimizing the models as well as for estimating parameters are reviewed. Numerous applications, covering remote sensing images, biological and medical imaging, are detailed. This book provides all the necessary tools for developing an image analysis application based on modern stochastic modeling.
Dealing with vibrations and waves, this text aims to provide understanding of the basic principles and methods of analysing various physical phenomena. The content includes the general properties of propagation, a detailed study of mechanical (elastic and acoustic) and electromagnetic waves, propagation, attenuation, dispersion, reflection, interference and diffraction of waves. It features chapters on the effect of motion of sources and observers (both classical and relativistic), emission of electromagnetic waves, standing and guided waves and a final chapter on de Broglie waves constitutes an introduction to quantum mechanics.