In Asian Noodles: Science, Technology and Processing, international experts review the current knowledge and offer comprehensive cutting-edge coverage on Asian noodles unmatchable in any publication. The authors cover an array of topics including breeding for noodle wheat, noodle flour milling, noodle flour quality control and analysis, noodle processing, sensory and instrumental measurements of noodle quality, the effects of wheat factors on noodle quality, packaging and storage, nutritional fortification of noodle products, noodle flavor seasoning, and noodle plant setup and management.
This book deals with various unique elements in the drug development process within chemical engineering science and pharmaceutical R&D. The book is intended to be used as a professional reference and potentially as a text book reference in pharmaceutical engineering and pharmaceutical sciences. Many of the experimental methods related to pharmaceutical process development are learned on the job. This book is intended to provide many of those important concepts that R&D Engineers and manufacturing Engineers should know and be familiar if they are going to be successful in the Pharmaceutical Industry. These include basic analytics for quantitation of reaction components– often skipped in ChE Reaction Engineering and kinetics books. In addition Chemical Engineering in the Pharmaceutical Industry introduces contemporary methods of data analysis for kinetic modeling and extends these concepts into Quality by Design strategies for regulatory filings. For the current professionals, in-silico process modeling tools that streamline experimental screening approaches is also new and presented here. Continuous flow processing, although mainstream for ChE, is unique in this context given the range of scales and the complex economics associated with transforming existing batch-plant capacity. The book will be split into four distinct yet related parts. These parts will address the fundamentals of analytical techniques for engineers, thermodynamic modeling, and finally provides an appendix with common engineering tools and examples of their applications.
The go-to guide for learning what to say and how to say it In this climate of near constant streams of media messages, organizations need to know how to effectively communicate risks to their audiences and what to say when a crisis strikes. Risk and Crisis Communications: Methods and Messages is designed to help organizations understand the essential components of communicating about risks during a crisis, and it carves out a role for safety health and environmental (SH&E) professionals in the process. Covering common theoretical concepts and explaining the positions of noted experts in the field such as Peter Sandman and Vincent Covello, the book provides a fundamental understanding of the process behind crafting effective messages for a variety of different situations and explains the consequences of saying the wrong thing to an emotional audience. Incorporating numerous case studies—including the BP Deepwater Horizon Oil Spill and the 2010 H1N1 pandemic—it shows how messages can change the way an audience perceives an event and how they react to it, clearly demonstrating how ineffective messages can create untold difficulties for an organization's public image. Savvy SH&E professionals know that their role in helping to craft risk and crisis messages as well as assisting in the execution of risk communication plans provides a critical path to becoming more valuable members of their organizations. Risk and Crisis Communications: Methods and Messages provides invaluable assistance in helping SH&E professionals add value to their organization.
Presents simulation techniques that substantially increase designers' control over the oscillationin autonomous circuits This book facilitates a sound understanding of the free-running oscillation mechanism, the start-up from the noise level, and the establishment of the steady-state oscillation. It deals with the operation principles and main characteristics of free-running and injection-locked oscillators, coupled oscillators, and parametric frequency dividers. Analysis and Design of Autonomous Microwave Circuits provides: An exploration of the main nonlinear-analysis methods, with emphasis on harmonic balance and envelope transient methods Techniques for the efficient simulation of the most common autonomous regimes A presentation and comparison of the main stability-analysis methods in the frequency domain A detailed examination of the instabilization mechanisms that delimit the operation bands of autonomous circuits Coverage of techniques used to eliminate common types of undesired behavior, such as spurious oscillations, hysteresis, and chaos A thorough presentation of the oscillator phase noise A comparison of the main methodologies of phase-noise analysis Techniques for autonomous circuit optimization, based on harmonic balance A consideration of different design objectives: presetting the oscillation frequency and output power, increasing efficiency, modifying the transient duration, and imposing operation bands Analysis and Design of Autonomous Microwave Circuits is a valuable resource for microwave designers, oscillator designers, and graduate students in RF microwave design.
Syndiotactic Polystyrene (SPS), synthesized in a laboratory for the first time in 1985, has become commercialized in a very short time, with wide acceptance on the global plastics market. Written by leading experts from academia and industry from all over the world, Syndiotactic Polystyrene offers a comprehensive review of all aspects of SPS of interest to both science and industry, from preparation and properties to applications. This essential reference to SPS covers: The preparation of syndiotactic polystyrene by half-metallocenes and other transition metal catalysts The structure and fundamental properties, especially morphology and crystallization and solution behavior The commercial process for SPS manufacturing Properties, processing, and applications of syndiotactic polystyrenes Polymers based on syndiotactic polystyrenes, for example, by functionalization and modification, and nanocomposites Ideal for polymer chemists, physicists, plastics engineers, materials scientists, and all those dealing with plastics manufacturing and processing, this important resource provides the information one needs to compare, select, and integrate an appropriate materials solution for industrial use or research.
Noise and Vibration Analysis is a complete and practical guide that combines both signal processing and modal analysis theory with their practical application in noise and vibration analysis. It provides an invaluable, integrated guide for practicing engineers as well as a suitable introduction for students new to the topic of noise and vibration. Taking a practical learning approach, Brandt includes exercises that allow the content to be developed in an academic course framework or as supplementary material for private and further study. Addresses the theory and application of signal analysis procedures as they are applied in modern instruments and software for noise and vibration analysis Features numerous line diagrams and illustrations Accompanied by a web site at www.wiley.com/go/brandt with numerous MATLAB tools and examples. Noise and Vibration Analysis provides an excellent resource for researchers and engineers from automotive, aerospace, mechanical, or electronics industries who work with experimental or analytical vibration analysis and/or acoustics. It will also appeal to graduate students enrolled in vibration analysis, experimental structural dynamics, or applied signal analysis courses.
The book is not an exposition on digital signal processing (DSP) but rather a treatise on digital filters. The material and coverage is comprehensive, presented in a consistent that first develops topics and subtopics in terms it their purpose, relationship to other core ideas, theoretical and conceptual framework, and finally instruction in the implementation of digital filter devices. Each major study is supported by Matlab-enabled activities and examples, with each Chapter culminating in a comprehensive design case study.
This book demonstrates that not only is it possible to create entities with both consciousness and conscience, but that those entities demonstrate them in ways different from our own, thereby showing a new kind of consciousness.
This innovative approach to the fundamentals of electric power provides the most rigorous, comprehensive and modern treatment available. To impart a thorough grounding in electric power systems, it begins with an informative discussion on per-unit normalizations, symmetrical components and iterative load flow calculations. Covering important topics within the power system, such as protection and DC transmission, this book looks at both traditional power plants and those used for extracting sustainable energy from wind and sunlight. With classroom-tested material, this book also presents: the principles of electromechanical energy conversion and magnetic circuits; synchronous machines – the most important generators of electric power; power electronics; induction and direct current electric motors. Homework problems with varying levels of difficulty are included at the end of each chapter, and an online solutions manual for tutors is available. A useful Appendix contains a review of elementary network theory. For senior undergraduate and postgraduate students studying advanced electric power systems as well as engineers re-training in this area, this textbook will be an indispensable resource. It will also benefit engineers in electronic power systems, power electronic systems, electric motors and generators, robotics and mechatronics. www.wiley.com/go/kirtley_electric
Explore polymer rheology from an industrial standpoint Presenting state-of-the-art polymer rheology as observed by well-recognized authors, Applied Polymer Rheology: Polymeric Fluids with Industrial Applications is designed to help readers understand the relationship between molecular structure and the flow behavior of polymers. In particular, it focuses on polymeric systems that elicit special attention from industry. Providing a comprehensive overview of the rheological characteristics of polymeric fluids, the book bridges the gap between theory and practice/application, enabling readers to see the connection between molecular structure and the behavior of the polymers studied. Beginning with a discussion of the properties, processability, and processing aids of specific polymers, later chapters examine filled polymers and composites, and the theoretical framework upon which their analysis is based. Various systems containing microstructure are presented subsequently, with the final chapter introducing paste extrusion of polytetrafluoroethylene paste. An invaluable reference guide that covers the literature and vast array of technical approaches to polymer rheology, Applied Polymer Rheology's coverage of polymeric fluids of interest to industry make it an essential resource for plastics, polymer, and chemical engineers, materials scientists, polymer chemists, and polymer physicists to use when interpreting findings and planning experiments.