Техническая литература

Различные книги в жанре Техническая литература

Sustainable Environmental Engineering

Mika Sillanpaa

The important resource that explores the twelve design principles of sustainable environmental engineering Sustainable Environmental Engineering (SEE) is to research, design, and build Environmental Engineering Infrastructure System (EEIS) in harmony with nature using life cycle cost analysis and benefit analysis and life cycle assessment and to protect human health and environments at minimal cost. The foundations of the SEE are the twelve design principles (TDPs) with three specific rules for each principle. The TDPs attempt to transform how environmental engineering could be taught by prioritizing six design hierarchies through six different dimensions. Six design hierarchies are prevention, recovery, separation, treatment, remediation, and optimization. Six dimensions are integrated system, material economy, reliability on spatial scale, resiliency on temporal scale, and cost effectiveness. In addition, the authors, two experts in the field, introduce major computer packages that are useful to solve real environmental engineering design problems. The text presents how specific environmental engineering issues could be identified and prioritized under climate change through quantification of air, water, and soil quality indexes. For water pollution control, eight innovative technologies which are critical in the paradigm shift from the conventional environmental engineering design to water resource recovery facility (WRRF) are examined in detail. These new processes include UV disinfection, membrane separation technologies, Anammox, membrane biological reactor, struvite precipitation, Fenton process, photocatalytic oxidation of organic pollutants, as well as green infrastructure. Computer tools are provided to facilitate life cycle cost and benefit analysis of WRRF. This important resource: • Includes statistical analysis of engineering design parameters using Statistical Package for the Social Sciences (SPSS) • Presents Monte Carlos simulation using Crystal ball to quantify uncertainty and sensitivity of design parameters • Contains design methods of new energy, materials, processes, products, and system to achieve energy positive WRRF that are illustrated with Matlab • Provides information on life cycle costs in terms of capital and operation for different processes using MatLab Written for senior or graduates in environmental or chemical engineering, Sustainable Environmental Engineering defines and illustrates the TDPs of SEE. Undergraduate, graduate, and engineers should find the computer codes are useful in their EEIS design. The exercise at the end of each chapter encourages students to identify EEI engineering problems in their own city and find creative solutions by applying the TDPs. For more information, please visit www.tang.fiu.edu.

Design for Safety

Jack Dixon

A one-stop reference guide to design for safety principles and applications Design for Safety (DfSa) provides design engineers and engineering managers with a range of tools and techniques for incorporating safety into the design process for complex systems. It explains how to design for maximum safe conditions and minimum risk of accidents. The book covers safety design practices, which will result in improved safety, fewer accidents, and substantial savings in life cycle costs for producers and users. Readers who apply DfSa principles can expect to have a dramatic improvement in the ability to compete in global markets. They will also find a wealth of design practices not covered in typical engineering books—allowing them to think outside the box when developing safety requirements. Design Safety is already a high demand field due to its importance to system design and will be even more vital for engineers in multiple design disciplines as more systems become increasingly complex and liabilities increase. Therefore, risk mitigation methods to design systems with safety features are becoming more important. Designing systems for safety has been a high priority for many safety-critical systems—especially in the aerospace and military industries. However, with the expansion of technological innovations into other market places, industries that had not previously considered safety design requirements are now using the technology in applications. Design for Safety: Covers trending topics and the latest technologies Provides ten paradigms for managing and designing systems for safety and uses them as guiding themes throughout the book Logically defines the parameters and concepts, sets the safety program and requirements, covers basic methodologies, investigates lessons from history, and addresses specialty topics within the topic of Design for Safety (DfSa) Supplements other books in the series on Quality and Reliability Engineering Design for Safety is an ideal book for new and experienced engineers and managers who are involved with design, testing, and maintenance of safety critical applications. It is also helpful for advanced undergraduate and postgraduate students in engineering. Design for Safety is the second in a series of “Design for” books. Design for Reliability was the first in the series with more planned for the future.

Safety in Design

C.M. van't Land

Expert insight and guidance on integrating safety into design to significantly reduce risks to people, systems, property, and communities Safe design refers to the integration of hazard identification and risk assessment methods early in the design process so as to eliminate or minimize the risks of catastrophic failure throughout the life of a system, process, product, or service. This book provides engineers, designers, scientists and governmental officials with the knowledge and tools needed to seamlessly incorporate safety into the design of civil, industrial, and agricultural installations, as well as transportation systems, so as to minimize the risk of accidents and injuries. The methodology described in Safety in Design originates from the continuous safeguarding techniques first developed in the chemical industry and can successfully be applied to a range of industrial and civil settings. While the author focuses mainly on the aspects of safe design, he also addresses procedures which have a proven track record of preventing and alleviating the impacts of accidents with existing designs. He shares lessons learned from his nearly half-century of experience in the field and provides accounts of mishaps which could have been prevented, or significantly mitigated, based on data collected from approximately seventy incidents that have occurred in various countries. • Describes the application of safe design in an array of fields, including the chemical industry, transportation, farming, the building trade, and leisure • Reviews the history of intrinsic process safeguarding, which was first used in the chemical industry to minimize the risk of human error or instrumentation failure • Describes dozens of preventable incidents to illustrate the critical role safe design can play • Provides expert guidance and valuable tools for seamlessly weaving safety into every phase of the design process Safety in Design is an indispensable working resource for chemical, civil, mechanical, risk, and safety engineers, as well as professional R&D scientists, and process safety professionals. It is also a useful reference for insurers who deal with catastrophic loss potentials, and for government personnel who regulate or monitor industrial plants and procedures, traffic systems, and more.

Handbook of Environmental Engineering

Myer Kutz

A comprehensive guide for both fundamentals and real-world applications of environmental engineering Written by noted experts, Handbook of Environmental Engineering offers a comprehensive guide to environmental engineers who desire to contribute to mitigating problems, such as flooding, caused by extreme weather events, protecting populations in coastal areas threatened by rising sea levels, reducing illnesses caused by polluted air, soil, and water from improperly regulated industrial and transportation activities, promoting the safety of the food supply. Contributors not only cover such timely environmental topics related to soils, water, and air, minimizing pollution created by industrial plants and processes, and managing wastewater, hazardous, solid, and other industrial wastes, but also treat such vital topics as porous pavement design, aerosol measurements, noise pollution control, and industrial waste auditing. This important handbook: Enables environmental engineers to treat problems in systematic ways Discusses climate issues in ways useful for environmental engineers Covers up-to-date measurement techniques important in environmental engineering Reviews current developments in environmental law for environmental engineers Includes information on water quality and wastewater engineering Informs environmental engineers about methods of dealing with industrial and municipal waste, including hazardous waste Designed for use by practitioners, students, and researchers, Handbook of Environmental Engineering contains the most recent information to enable a clear understanding of major environmental issues.

Engineering, Medicine and Science at the Nano-Scale

Marcel Van de Voorde

Students at universities the world over will benefit from the authors' concise treatment, arising out of lectures given for a graduate and advanced undergraduate course at Penn State University (USA) and University of Technology Delft (NL). The textbook begins by addressing, in general terms, the phenomena and peculiarities that occur at the nanoscale. In the following five chapters, readers are introduced in detail to nanoscale physics, chemistry, materials science, and biology, followed by chapters on synthesis and fabrication as well as characterization at the nanoscale. In the next four chapters a variety of exemplary applications taken from a wide range of sectors are also presented and discussed. Concerns for safety, environmental impact, workforce development, economic wellbeing, and societal change issues arising from nanotechnology are woven throughout the book and additionally form the focus of the last two chapters.

Case Studies in Fluid Mechanics with Sensitivities to Governing Variables

M. Atesmen Kemal

Covers a wide range of practical fluid mechanics, heat transfer, and mass transfer problems This book covers the many issues that occur in practical fluid mechanics, heat transfer, and mass transfer, and examines the basic laws (the conservation of matter, conservation of momentum, conservation of energy, and the second law of thermodynamics) of these areas. It offers problem solutions that start with simplifying engineering assumptions and then identifies the governing equations and dependent and independent variables. When solutions to basic equations are not possible, the book utilizes historical experimental studies. It also looks at determining appropriate thermo-physical properties of the fluid under investigation, and covers solutions to governing equations with experimental studies. Case Studies in Fluid Mechanics with Sensitivities to Governing Variables offers chapters on: draining fluid from a tank; vertical rise of a weather balloon; wind drag forces on people; Venturi meter; fluid’s surface shape in a rotating cylindrical tank; range of an aircraft; designing a water clock; water turbine under a dam; centrifugal separation of particles; ideal gas flow in nozzles and diffusers; water supply from a lake to a factory; convection mass transfer through air-water interface; heating a room by natural convection; condensation on the surface of a vertical plate in laminar flow regime; bubble rise in a glass of beer; and more. Covers a broad spectrum of problems in practical fluid mechanics, heat transfer, and mass transfer Examines the basic laws of fluid mechanics, heat transfer and mass transfer Presents solutions to governing equations with experimental studies Case Studies in Fluid Mechanics with Sensitivities to Governing Variables will appeal to engineers working in thermo-physical sciences and graduate students in mechanical engineering.

Introduction to Mobile Network Engineering: GSM, 3G-WCDMA, LTE and the Road to 5G

Alexander Kukushkin

Summarizes and surveys current LTE technical specifications and implementation options for engineers and newly qualified support staff Concentrating on three mobile communication technologies, GSM, 3G-WCDMA, and LTE—while majorly focusing on Radio Access Network (RAN) technology—this book describes principles of mobile radio technologies that are used in mobile phones and service providers’ infrastructure supporting their operation. It introduces some basic concepts of mobile network engineering used in design and rollout of the mobile network. It then follows up with principles, design constraints, and more advanced insights into radio interface protocol stack, operation, and dimensioning for three major mobile network technologies: Global System Mobile (GSM) and third (3G) and fourth generation (4G) mobile technologies. The concluding sections of the book are concerned with further developments toward next generation of mobile network (5G). Those include some of the major features of 5G such as a New Radio, NG-RAN distributed architecture, and network slicing. The last section describes some key concepts that may bring significant enhancements in future technology and services experienced by customers. Introduction to Mobile Network Engineering: GSM, 3G-WCDMA, LTE and the Road to 5G covers the types of Mobile Network by Multiple Access Scheme; the cellular system; radio propagation; mobile radio channel; radio network planning; EGPRS – GPRS/EDGE; Third Generation Network (3G), UMTS; High Speed Packet data access (HSPA); 4G-Long Term Evolution (LTE) system; LTE-A; and Release 15 for 5G. Focuses on Radio Access Network technologies which empower communications in current and emerging mobile network systems Presents a mix of introductory and advanced reading, with a generalist view on current mobile network technologies Written at a level that enables readers to understand principles of radio network deployment and operation Based on the author’s post-graduate lecture course on Wireless Engineering Fully illustrated with tables, figures, photographs, working examples with problems and solutions, and section summaries highlighting the key features of each technology described Written as a modified and expanded set of lectures on wireless engineering taught by the author, Introduction to Mobile Network Engineering: GSM, 3G-WCDMA, LTE and the Road to 5G is an ideal text for post-graduate and graduate students studying wireless engineering, and industry professionals requiring an introduction or refresher to existing technologies.

Methods for Reliability Improvement and Risk Reduction

Michael Todinov

Reliability is one of the most important attributes for the products and processes of any company or organization. This important work provides a powerful framework of domain-independent reliability improvement and risk reducing methods which can greatly lower risk in any area of human activity. It reviews existing methods for risk reduction that can be classified as domain-independent and introduces the following new domain-independent reliability improvement and risk reduction methods: Separation Stochastic separation Introducing deliberate weaknesses Segmentation Self-reinforcement Inversion Reducing the rate of accumulation of damage Permutation Substitution Limiting the space and time exposure Comparative reliability models The domain-independent methods for reliability improvement and risk reduction do not depend on the availability of past failure data, domain-specific expertise or knowledge of the failure mechanisms underlying the failure modes. Through numerous examples and case studies, this invaluable guide shows that many of the new domain-independent methods improve reliability at no extra cost or at a low cost. Using the proven methods in this book, any company and organisation can greatly enhance the reliability of its products and operations.

Materials Science and Technology of Optical Fabrication

Tayyab Suratwala I.

Covers the fundamental science of grinding and polishing by examining the chemical and mechanical interactions over many scale lengths Manufacturing next generation optics has been, and will continue to be, enablers for enhancing the performance of advanced laser, imaging, and spectroscopy systems. This book reexamines the age-old field of optical fabrication from a materials-science perspective, specifically the multiple, complex interactions between the workpiece (optic), slurry, and lap. It also describes novel characterization and fabrication techniques to improve and better understand the optical fabrication process, ultimately leading to higher quality optics with higher yield. Materials Science and Technology of Optical Fabrication is divided into two major parts. The first part describes the phenomena and corresponding process parameters affecting both the grinding and polishing processes during optical fabrication. It then relates them to the critical resulting properties of the optic (surface quality, surface figure, surface roughness, and material removal rate). The second part of the book covers a number of related topics including: developed forensic tools used to increase yield of optics with respect to surface quality (scratch/dig) and fracture loss; novel characterization and fabrication techniques used to understand/quantify the fundamental phenomena described in the first part of the book; novel and recent optical fabrication processes and their connection with the fundamental interactions; and finally, special techniques utilized to fabricate optics with high damage resistance. Focuses on the fundamentals of grinding and polishing, from a materials science viewpoint, by studying the chemical and mechanical interactions/phenomena over many scale lengths between the workpiece, slurry, and lap Explains how these phenomena affect the major characteristics of the optic workpiece—namely surface figure, surface quality, surface roughness, and material removal rate Describes methods to improve the major characteristics of the workpiece as well as improve process yield, such as through fractography and scratch forensics Covers novel characterization and fabrication techniques used to understand and quantify the fundamental phenomena of various aspects of the workpiece or fabrication process Details novel and recent optical fabrication processes and their connection with the fundamental interactions Materials Science and Technology of Optical Fabrication is an excellent guidebook for process engineers, fabrication engineers, manufacturing engineers, optical scientists, and opticians in the optical fabrication industry. It will also be helpful for students studying material science and applied optics/photonics.