Covers the significant embedded computing technologies—highlighting their applications in wireless communication and computing power An embedded system is a computer system designed for specific control functions within a larger system—often with real-time computing constraints. It is embedded as part of a complete device often including hardware and mechanical parts. Presented in three parts, Embedded Systems: Hardware, Design, and Implementation provides readers with an immersive introduction to this rapidly growing segment of the computer industry. Acknowledging the fact that embedded systems control many of today's most common devices such as smart phones, PC tablets, as well as hardware embedded in cars, TVs, and even refrigerators and heating systems, the book starts with a basic introduction to embedded computing systems. It hones in on system-on-a-chip (SoC), multiprocessor system-on-chip (MPSoC), and network-on-chip (NoC). It then covers on-chip integration of software and custom hardware accelerators, as well as fabric flexibility, custom architectures, and the multiple I/O standards that facilitate PCB integration. Next, it focuses on the technologies associated with embedded computing systems, going over the basics of field-programmable gate array (FPGA), digital signal processing (DSP) and application-specific integrated circuit (ASIC) technology, architectural support for on-chip integration of custom accelerators with processors, and O/S support for these systems. Finally, it offers full details on architecture, testability, and computer-aided design (CAD) support for embedded systems, soft processors, heterogeneous resources, and on-chip storage before concluding with coverage of software support—in particular, O/S Linux. Embedded Systems: Hardware, Design, and Implementation is an ideal book for design engineers looking to optimize and reduce the size and cost of embedded system products and increase their reliability and performance.
The BIM Manager's Handbook: Guidance for Professionals in Architecture, Engineering, and Construction Building Information Modelling (BIM) is a design and construction software that manages not just graphics, but also information—information that enables the automatic generation of drawings and reports, design analysis, schedule simulation, facilities management, and cost analysis—ultimately enabling any building team to make better-informed decisions. This allows a range of professionals—architects, engineers, construction managers, surveyors, cost estimators, project managers, and facility managers—to share this information throughout a building's lifecycle. BIM is now recognized worldwide for the efficiencies it delivers in terms of working collaboratively, communication, processes, cost savings, and a property's lifecycle management. With the widespread adoption of BIM, BIM Managers have become a much-needed new breed of professionals in architectural, engineering, and construction practice. Their role is often misunderstood and ill-defined, and such are the day-to-day deliverables that they are likely to face. The BIM Manager's Handbook provides an in-depth account of the breadth of activities that any BIM Manager or staff member, who is actively engaged in the delivery of project, is required to undertake. Providing prereleases of the final work, The BIM Manager's Handbook ePart series isolates significant topics around BIM management. In the sixth and final ePart, BIM is taken to the next level by outlining what is required to truly excel as a BIM Manager. It highlights how BIM Managers acquire the necessary communication skills to maximize an efficient information flow between the BIM Manager and others. It illustrates how BIM Managers tie their activities to cutting-edge BIM research and development globally. Lastly, this ePart lays out how to promote BIM excellence both within an organization and beyond.
This authoritative guide provides a basis for understanding the emerging technology of ground source heating and cooling. It equips engineers, geologists, architects, planners and regulators with the fundamental skills needed to manipulate the ground's huge capacity to store, supply and receive heat, and to implement technologies (such as heat pumps) to exploit that capacity for space heating and cooling. The author has geared the book towards understanding ground source heating and cooling from the ground side (the geological aspects), rather than solely the building aspects. He explains the science behind thermogeology and offers practical guidance on different design options. An Introduction to Thermogeology: ground source heating and cooling is aimed primarily at professionals whose skill areas impinge on the emerging technology of ground source heating and cooling. They will be aware of the importance of the technology and wish to rapidly acquire fundamental theoretical understanding and design skills. This second edition has been thoroughly updated and expanded to cover new technical developments and now includes end-of-chapter study questions to test the reader's understanding.
The leading green building reference, updated with the latest advances in the field Sustainable Construction is the leading reference for the design, construction, and operation of high performance green buildings. With broad coverage including architecture, engineering, and construction, this book nevertheless delivers detailed information on all aspects of the green building process, from materials selection to building systems and more. This new fourth edition has been updated to reflect the latest codes and standards, including LEED v4, and includes new coverage of carbon accounting. The discussion has been updated to align with the current thinking on economics, climate change, net zero buildings, and more, with contributions by leaders in the field that illustrate the most recent shifts in thinking and practice. Ancillary materials including an instructor's manual and PowerPoint presentations for each chapter help bring this clear and up-to-date information into the classroom, making this book a valuable reference for working construction professionals. Also, Interactive graphics found throughout the course help activate the content and highlight key concepts for students. Sustainable construction has gone mainstream, and will one day be the industry norm. This book provides a comprehensive reference to all aspects of a project to show you how green building concepts and principles apply throughout the design and construction process. Get up to date on the latest green building codes and standards Learn about the newest technology in green building materials Adopt the best practices in procurement and delivery systems Apply sustainability concepts to all aspects of construction and design Green buildings operate at a very high level of efficiency, which is made possible only by careful consideration every step of the way. Appropriate land use, landscaping, construction materials, siting, water use, and more all play a role in a structure's ultimate carbon footprint. Sustainable Construction provides clear guidance for all aspects of green building, including the most recent advances and the latest technology.
This book describes the design and performance analysis of satnav systems, signals, and receivers, with a general approach that applies to all satnav systems and signals in use or under development. It also provides succinct descriptions and comparisons of each satnav system. Clearly structured, and comprehensive depiction of engineering satellite-based navigation and timing systems, signals, and receivers GPS as well as all new and modernized systems (SBAS, GLONASS, Galileo, BeiDou, QZSS, IRNSS) and signals being developed and fielded Theoretical and applied review questions, which can be used for homework or to obtain deeper insights into the material Extensive equations describing techniques and their performance, illustrated by MATLAB plots New results, novel insights, and innovative descriptions for key approaches and results in systems engineering and receiver design If you are an instructor and adopted this book for your course, please email [email protected] to get access to the instructor files for this book.
Provides a comprehensive introduction to ion exchange for beginners and in-depth coverage of the latest advances for those already in the field As environmental and energy related regulations have grown, ion exchange has assumed a dominant role in offering solutions to many concurrent problems both in the developed and the developing world. Written by an internationally acknowledged leader in ion exchange research and innovation, Ion Exchange: in Environmental Processes is both a comprehensive introduction to the science behind ion exchange and an expert assessment of the latest ion exchange technologies. Its purpose is to provide a valuable reference and learning tool for virtually anyone working in ion exchange or interested in becoming involved in that incredibly fertile field. Written for beginners as well as those already working the in the field, Dr. SenGupta provides stepwise coverage, advancing from ion exchange fundamentals to trace ion exchange through the emerging area of hybrid ion exchange nanotechnology (or polymeric/inorganic ion exchangers). Other topics covered include ion exchange kinetics, sorption and desorption of metals and ligands, solid-phase and gas-phase ion exchange, and more. Connects state-of-the-art innovations in such a way as to help researchers and process scientists get a clear picture of how ion exchange fundamentals can lead to new applications Covers the design of selective or smart ion exchangers for targeted applications—an area of increasing importance—including solid and gas phase ion exchange processes Provides in-depth discussion on intraparticle diffusion controlled kinetics for selective ion exchange Features a chapter devoted to exciting developments in the areas of hybrid ion exchange nanotechnology or polymeric/inorganic ion exchangers Written for those just entering the field of ion exchange as well as those involved in developing the “next big thing” in ion exchange systems, Ion Exchange in Environmental Processes is a valuable resource for students, process engineers, and chemists working in an array of industries, including mining, microelectronics, pharmaceuticals, energy, and wastewater treatment, to name just a few.
Covers modern photonics accessibly and discusses the basic physical principles underlying all the applications and technology of photonics. This volume covers the basic physical principles underlying the technology and all applications of photonics from statistical optics to quantum optics. The topics discussed in this volume are: Photons in perspective; Coherence and Statistical Optics; Complex Light and Singular Optics; Electrodynamics of Dielectric Media; Fast and slow Light; Holography; Multiphoton Processes; Optical Angular Momentum; Optical Forces, Trapping and Manipulation; Polarization States; Quantum Electrodynamics; Quantum Information and Computing; Quantum Optics; Resonance Energy Transfer; Surface Optics; Ultrafast Pulse Phenomena. Comprehensive and accessible coverage of the whole of modern photonics Emphasizes processes and applications that specifically exploit photon attributes of light Deals with the rapidly advancing area of modern optics Chapters are written by top scientists in their field Written for the graduate level student in physical sciences; Industrial and academic researchers in photonics, graduate students in the area; College lecturers, educators, policymakers, consultants, Scientific and technical libraries, government laboratories, NIH.
This book has been designed as a result of the author’s teaching experiences; students in the courses came from various disciplines and it was very difficult to prescribe a suitable textbook, not because there are no books on these topics, but because they are either too exhaustive or very elementary. This book, therefore, includes only relevant topics in the fundamentals of the physics of semiconductors and of electrochemistry needed for understanding the intricacy of the subject of photovoltaic solar cells and photoelectrochemical (PEC) solar cells. The book provides the basic concepts of semiconductors, p:n junctions, PEC solar cells, electrochemistry of semiconductors, and photochromism. Researchers, engineers and students engaged in researching/teaching PEC cells or knowledge of our sun, its energy, and its distribution to the earth will find essential topics such as the physics of semiconductors, the electrochemistry of semiconductors, p:n junctions, Schottky junctions, the concept of Fermi energy, and photochromism and its industrial applications. «The topics in this book are explained with clear illustration and indispensable terminology. It covers both fundamental and advanced topics in photoelectrochemistry and I believe that the content presented in this monograph will be a resource in the development of both academic and industrial research». —Professor Akira Fujishima, President, Tokyo University of Science, and Director, Photocatalysis International Research Center, Tokyo University of Science, Japan
This book has been written with the idea of providing the fundamentals for those who are interested in the field of heat transfer to non-Newtonian uids. It is well recognized that non-Newtonian fluids are encountered in a number of transport processes and estimation of the heat transfer characteristics in the presence of these fl uids requires analysis of equations that are far more complex than those encountered for Newtonian fl uids. A deliberate effort has be made to demonstrate the methods of simplication of the complex equations and to put forth analytical expressions for the various heat transfer situations in as vivid manner as possible. The book covers a broad range of topics from forced, naturaland mixed convection without and with porous media. Laminaras well as turbulent flow heat transfer to non-Newtonian fluids have been treated and the criterion for transition from laminar toturbulent fl ow for natural convection has been established. The heat transfer characteristics of non-Newtonian fl uids from inelastic power-law fluids to viscoelastic second-order fluids and mildly elastic drag reducing fl uids are covered. This book can serve the needs of undergraduates, graduates and industry personnel from the fields of chemical engineering, material science and engineering, mechanical engineering and polymer engineering.
To the layman, adhesion is a simple matter of how well two different materials stick together, and adhesion measurements provide some indication of the force required to separate them. However, a more detailed look at adhesion shows that it is a very important feature of food throughout its manufacturing, packaging and storage. Chapters are fully devoted to the fascinating topic of adhesion in foods. Key features of the book include, but are not limited to: definition and nomenclature of adhesion; adhesion mechanisms and measurements; stickiness in various foods and its relation to technological processes; perception of stickiness; hydrocolloids as adhesive agents for foods; adhesion phenomena in coated, battered, breaded and fried foods; electrostatic adhesion in foods; multilayered adhered food products, and adhesion of substances to packaging and cookware. Adhesion in Foods: Fundamental Principles and Applications is dedicated not only to the academic community but also to the broader population of industrialists and experimentalists who will find it to be not only a source of knowledge, but also a launching pad for novel ideas and inventions. In particular, this book is expected to be of interest to personnel involved in food formulation, food scientists, food technologists, industrial chemists and engineers, and those working in product development.