The 2nd volume on applications with discuss the various aspects of state-of-the-art, new challenges and opportunities for gas and vapor separation of polymer membranes, membranes for wastewater treatment, polymer electrolyte membranes and methanol fuel cells, polymer membranes for water desalination, optical, electrochemical and anion/polyanion sensors, polymeric pervaporation membranes, organic-organic separation, biopolymer electrolytes for energy devices, carbon nanoparticles for pervaporation polymeric membranes, and mixed matrix membranes for nanofiltration application.
Textbook covers the fundamental theory of structural mechanics and the modelling and analysis of frame and truss structures Deals with modelling and analysis of trusses and frames using a systematic matrix formulated displacement method with the language and flexibility of the finite element method Element matrices are established from analytical solutions to the differential equations Provides a strong toolbox with elements and algorithms for computational modelling and numerical exploration of truss and frame structures Discusses the concept of stiffness as a qualitative tool to explain structural behaviour Includes numerous exercises, for some of which the computer software CALFEM is used. In order to support the learning process CALFEM gives the user full overview of the matrices and algorithms used in a finite element analysis
Brown Trout: Biology, Ecology and Management A comprehensive guide to the most current research, history, genetics and ecology of the brown trout including challenging environmental problems The brown trout is an iconic species across its natural European distribution and has been introduced throughout the World. Brown Trout offers a comprehensive review of the scientific information and current research on this major fish species. While the brown trout is the most sought species by anglers, its introduction to various waters around the world is causing serious environmental problems. At the same time, introduction of exogenous brown trout lineages threats conservation of native gene pools of populations in many regions. The authors summarize the important aspects of the brown trout’s life history and ecology and focus on the impact caused by the species. The text explores potential management strategies in order to maintain numerous damaged populations within its natural distributional range and to ameliorate its impacts in exotic environments. The authors include information on a wide-range of topics such as recent updates in population genetics, evolutionary history, reproductive traits and early ontogeny, life history plasticity in anadromous brown trout and life history of the adfluvial brown trout and much more. This vital resource: Contains the latest research on the biology and ecology of brown trout Includes information on phylogeography, genetics, population dynamics and stock management Spotlights the brown trout’s introduction to regions around the world and the serious environmental impacts Offers a comprehensive review of conservation and management techniques Written for salmonid scientists and researchers, fishery and environmental managers, and students of population genetics, ecology and population dynamics, Brown Trout explores the most recent findings on the history, ecology and sustainability of this much-researched species.
Hydrostatic Transmissions and Actuators takes a pedagogical approach and begins with an overview of the subject, providing basic definitions and introducing fundamental concepts. Hydrostatic transmissions and hydrostatic actuators are then examined in more detail with coverage of pumps and motors, hydrostatic solutions to single-rod actuators, energy management and efficiency and dynamic response. Consideration is also given to current and emerging applications of hydrostatic transmissions and actuators in automobiles, mobile equipment, wind turbines, wave energy harvesting and airplanes. End of chapter exercises and real world industrial examples are included throughout and a companion website hosting a solution manual is also available. Hydrostatic Transmissions and Actuators is an up to date and comprehensive textbook suitable for courses on fluid power systems and technology, and mechatronics systems design.
Defines the notion of an activity model learned from sensor data and presents key algorithms that form the core of the field Activity Learning: Discovering, Recognizing and Predicting Human Behavior from Sensor Data provides an in-depth look at computational approaches to activity learning from sensor data. Each chapter is constructed to provide practical, step-by-step information on how to analyze and process sensor data. The book discusses techniques for activity learning that include the following: Discovering activity patterns that emerge from behavior-based sensor data Recognizing occurrences of predefined or discovered activities in real time Predicting the occurrences of activities The techniques covered can be applied to numerous fields, including security, telecommunications, healthcare, smart grids, and home automation. An online companion site enables readers to experiment with the techniques described in the book, and to adapt or enhance the techniques for their own use. With an emphasis on computational approaches, Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data provides graduate students and researchers with an algorithmic perspective to activity learning.
Edited by leading experts and pioneers in the field, this is the first up-to-date book on this hot topic. The authors provide synthetic chemists with different methods to activate carbon-carbon sigma bonds in organic molecules promoted by transition metal complexes. They explain the basic principles and strategies for carbon-carbon bond cleavage and highlight recently developed synthetic protocols based on this methodology. In so doing, they cover cleavage of C-C bonds in strained molecules, reactions involving elimination of carbon dioxide and ketones, reactions via retroallylation, and cleavage of C-C bonds of ketones and nitriles. The result is an excellent information source for researchers in academia and industry working in the field of synthetic organic chemistry, while equally serving as supplementary reading for advanced courses in organometallic chemistry and catalysis.
This book brings together innovative methodologies and strategies adopted in the research and developments of Advanced 2D Materials. Well-known worldwide researchers deliberate subjects on (1) Synthesis, characterizations, modeling and properties, (2) State-of-the-art design and (3) innovative uses of 2D materials including: Two-dimensional layered gallium selenide Synthesis of 2D boron nitride nanosheets The effects of substrates on 2-D crystals Electrical conductivity and reflectivity of models of some 2D materials Graphene derivatives in semicrystalline polymer composites Graphene oxide based multifunctional composites Covalent and non-covalent polymer grafting of graphene oxide Graphene-semiconductor hybrid photocatalysts for solar fuels Graphene based sensors Graphene composites from bench to clinic Photocatalytic ZnO-graphene hybrids Hydroxyapatite-graphene bioceramics in orthopaedic applications
Graphene Materials: Fundamentals and Emerging Applications brings together innovative methodologies with research and development strategies to provide a detailed state-of-the-art overview of the processing, properties, and technology developments of graphene materials and their wide-ranging applications. The applications areas covered are biosensing, energy storage, environmental monitoring, and health. The book discusses the various methods that have been developed for the preparation and functionalization of single-layered graphene nanosheets. These form the essential building blocks for the bottom-up architecture of various graphene materials because they possess unique physico-chemical properties such as large surface areas, good conductivity and mechanical strength, high thermal stability and desirable flexibility. The electronic behavior in graphene, such as dirac fermions obtained due to the interaction with the ions of the lattice, has led to the discovery of novel miracles like Klein tunneling in carbon-based solid state systems and the so-called half-integer quantum Hall effect. The combination of these properties makes graphene a highly desirable material for applications. In particular, Graphene Materials: Fundamentals and Emerging Applications has chapters covering: • Graphene and related two-dimensional nanomaterials • Surface functionalization of graphene • Functional three-dimensional graphene networks • Covalent graphene-polymer nanocomposites • Magnesium matrix composites reinforced with graphene nanoplatelets • Graphene derivatives for energy storage • Graphene nanocomposite for high performance supercapacitors • Graphene nanocomposite-based bulk hetro-junction solar cells • Graphene bimetallic nanocatalysts foam for energy storage and biosensing • Graphene nanocomposites-based for electrochemical sensors • Graphene electrodes for health and environmental monitoring
The increasing demand for healthy foods has resulted in the food industry developing functional foods with health-promoting and/or disease preventing properties. However, many of these products bring new challenges. While drugs are taken for their efficacy, functional foods need to have tastes that are acceptable to consumers. Bitterness associated with the functional foods is one of the major challenges encountered by food industry today and will remain so in years to come. This important book offers a thorough understanding of bitterness, the food ingredients that cause it and its accurate measurement. The authors provide a thorough review of bitterness that includes an understanding of the genetics of bitterness perception and the molecular basis for individual differences in bitterness perception. This is followed by a detailed review of the chemical structure of bitter compounds in foods where bitterness may be considered to be a positive or negative attribute. To better understand bitterness in foods, separation and analytical techniques used to identify and characterize bitter compounds are also covered. Food processing can itself generate compounds that are bitter, such as the Maillard reaction and lipid oxidation related products. Since bitterness is considered a negative attribute in many foods, the methods being used to remove and/mask it are also thoroughly discussed.
A multi-disciplinary approach to transportation planning fundamentals The Transportation Planning Handbook is a comprehensive, practice-oriented reference that presents the fundamental concepts of transportation planning alongside proven techniques. This new fourth edition is more strongly focused on serving the needs of all users, the role of safety in the planning process, and transportation planning in the context of societal concerns, including the development of more sustainable transportation solutions. The content structure has been redesigned with a new format that promotes a more functionally driven multimodal approach to planning, design, and implementation, including guidance toward the latest tools and technology. The material has been updated to reflect the latest changes to major transportation resources such as the HCM, MUTCD, HSM, and more, including the most current ADA accessibility regulations. Transportation planning has historically followed the rational planning model of defining objectives, identifying problems, generating and evaluating alternatives, and developing plans. Planners are increasingly expected to adopt a more multi-disciplinary approach, especially in light of the rising importance of sustainability and environmental concerns. This book presents the fundamentals of transportation planning in a multidisciplinary context, giving readers a practical reference for day-to-day answers. Serve the needs of all users Incorporate safety into the planning process Examine the latest transportation planning software packages Get up to date on the latest standards, recommendations, and codes Developed by The Institute of Transportation Engineers, this book is the culmination of over seventy years of transportation planning solutions, fully updated to reflect the needs of a changing society. For a comprehensive guide with practical answers, The Transportation Planning Handbook is an essential reference.